5,376 research outputs found

    Cryptanalysis of group-based key agreement protocols using subgroup distance functions

    Full text link
    We introduce a new approach for cryptanalysis of key agreement protocols based on noncommutative groups. This approach uses functions that estimate the distance of a group element to a given subgroup. We test it against the Shpilrain-Ushakov protocol, which is based on Thompson's group F

    Flight prototype regenerative particulate filter system development

    Get PDF
    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions

    MP 2009-09

    Get PDF
    As the price of traditional fossil fuels escalates, there is increasing interest in using renewable resources, such as biomass, to meet our energy needs. Biomass resources are of particular interest to communities in interior Alaska, where they are abundant (Fresco, 2006). Biomass has the potential to partially replace heating oil, in addition to being a possible source for electric power generation (Crimp and Adamian, 2000; Nicholls and Crimp, 2002; Fresco, 2006). The communities of Tanana and Dot Lake have already installed small Garn boilers to provide space heating for homes and businesses (Alaska Energy Authority, 2009). A village-sized combined heat and power (CHP) demonstration project has been proposed in North Pole. In addition, several Fairbanks area organizations are interested in using biomass as a fuel source. For example, the Fairbanks North Star Borough is interested in using biomass to supplement coal in a proposed coal-to-liquids project, the Cold Climate Housing Research Center is planning to test a small biomass fired CHP unit, and the University of Alaska is planning an upgrade to its existing coal-fired power plant that could permit co-firing with biomass fuels. The challenge for all of these projects is in ensuring that biomass can be harvested on both an economically and ecologically sustainable basis

    Residual thermal and moisture influences on the strain energy release rate analysis of edge delamination

    Get PDF
    A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions

    Tension strength of a thick graphite/epoxy laminate after impact by a 1/2-in. radius impactor

    Get PDF
    NASA is developing graphite/epoxy filament-wound cases for solid rocket motors of the space shuttle. They are wet-wound with AS4W graphite fiber and HBRF-55A epoxy. The membrane region is about 1.4 inches thick. Two 30-inch-diameter by 12-inch-long cylinders were impacted every two inches of circumference with 1/2-inch radius impactors that were dropped from various heights. One cylinder was empty and the other was filled with inert propellant. Two-inch-wide test specimens were cut from the cylinders. Each was centered on an impact site. The specimens were x-rayed and loaded to failure in uniaxial tension. Rigid body mechanics and the Hertz law were used to predict impact force, local deformations, contact diameters, and contact pressures. The depth of impact damage was predicted using Love's solution for pressure applied on part of the boundary of a semi-infinite body. The predictions were reasonably good. The strengths of the impacted specimens were reduced by as much as 37 percent without visible surface damage. Even the radiographs did not reveal the nonvisible damage

    Space transportation systems, launch systems, and propulsion for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years

    Seismic performance of reinforced concrete tall buildings with conventional and non-conventional construction systems

    Get PDF
    Currently in the city of Lima there is a limited number of high-rise buildings. Therefore, there is not much literature on this type of building in Peru. Peruvian codes focus on medium and low-rise buildings. For this reason, studies are required to analyze and design these tall buildings more appropriately according to the reality of the country. In this article, a pushover modal analysis of 6 types of 35-Story reinforced concrete buildings in the city of Lima will be developed. Three building models with different structural systems and square and rectangular plan are proposed, being the areas of 29m × 29m and 52m × 26m respectively. These structural systems are rigid core and frames with an energy dissipation system (fluid viscous dampers and shear-link-bozzo dissipators SLB) in order to study their behavior against seismic stresses. These buildings were based on the criteria and requirements of the current codes in the country as well as the distribution of the floor plan of buildings commonly used for offices and homes. Natural periods (T) were found to range from 2.6 to 3.3 seconds for rigid core buildings. There is an increase for viscous damping buildings from 4.2 to 5.4 seconds and also for SLB devices to range from 3.7 to 4.6 seconds. In turn, modal static nonlinear analysis was performed to obtain the capacity curves for each type of building, which were compared with the seismic demands according to the design provisions of the Peruvian seismic standard E.030 and an average of design spectra. of acceleration records of severe seismic events in Peru and scaled in a range of 0.2T to 1.5T. The performance points for each building case were determined following the ATC-40 methodologies, finding that tall buildings with a rigid core have approximately twice the stiffness of buildings with SLB dampers, as well as low ductility, unlike buildings with dissipators, that have a high ductility
    • …
    corecore