258 research outputs found

    Performance of cuprous oxide mesoparticles with different morphologies as catalysts in a carbon nanotube ink for printing electrochemical sensors

    Get PDF
    A simplified, surfactant-free method is presented for the synthesis of cuprous oxide mesoparticles involving the use of only three reactants at room temperature. Different morphologies, such as cubes, cuboctahedra, truncated octahedra, octahedra, hexapods, and porous spheres could be obtained using different concentrations of reactants. The roles played by each reactant in the synthesis are critically discussed. The mesoparticles were used in the formulation of carbon nanotube-based waterborne inks to prepare coated electrodes. The electrocatalytic activity of the different cuprous oxide mesoparticles used in the inks towards hydrogen peroxide reduction was measured and compared. Cuprous oxide hexapods yielded the highest sensitivity whereas porous spheres were superior in terms of stability. The combination of carbon nanotubes and cuprous oxide mesoparticles in waterborne ink allows printing of electrodes combining electrical conduction and electrocatalysis in a single layer printed onto flexible substrates.Fil: Veiga, Lionel S.. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Garate, Octavio. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Tancredi, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Monsalve, Leandro Nicolas. Instituto Nacional de Tecnología Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ybarra, Gabriel. Instituto Nacional de Tecnología Industrial; Argentin

    Identification of an Extended Accretion Disk Corona in the Hercules X-1 Low State: Moderate Optical Depth, Precise Density Determination, and Verification of CNO Abundances

    Full text link
    We identify an accretion disk atmosphere and corona from the high resolution X-ray spectrum of Hercules X-1, and we determine its detailed physical properties. More than two dozen recombination emission lines (from Fe XXVI at 1.78 A to N VI at 29.08 A) and Fe K-alpha, K-beta fluorescence lines were detected in a 50 ks observation with the Chandra High-Energy Transmission Grating Spectrometer (HETGS). They allow us to measure the density, temperature, spatial distribution, elemental composition, and kinematics of the plasma. We exclude HZ Her as the source of the recombination emission. We compare accretion disk model atmospheres with the observed spectrum in order to constrain the stratification of density and ionization, disk atmosphere area, elemental composition, and energetics. The atmospheric spectrum observed during the low state is photoionized by the main-on X-ray continuum, indicating that the disk is observed edge-on during the low state. We infer the mean number of scatterings N of Ly-alpha and Ly-beta line photons from H-like ions. We derive N < 69 for O VIII Ly_alpha_1, which rules out the presence of a mechanism modeled by Sako (2003) to enhance N VII emission via a line overlap with O VIII. The line optical depth diagnostics are consistent with a flattened atmosphere. Our spectral analysis, the disk atmosphere model, and the presence of intense N VII and N VI lines (plus N V in the UV), confirm the over-abundance of nitrogen relative to other metals, which was shown to be indicative of CNO cycle processing in a massive progenitor.Comment: 38 pages, 14 figures, accepted for publication in Ap
    corecore