48 research outputs found

    Regions identity between the genome of vertebrates and non-retroviral families of insect viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species.</p> <p>Results</p> <p>Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses.</p> <p>Conclusion</p> <p>Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.</p

    Robust method for broadband efficiency enhancement of electron photocathodes using optical interferences

    Get PDF
    We demonstrate the key features of an interference cathode using both simulations and experiments. We deposit Cs3Sb photocathodes on Ag to produce an interference enhanced photocathode with 2 5 quantum efficiency QE enhancement using a robust procedure that requires only a smooth metal substrate and QE monitoring during growth. We grow both an interference cathode Ag substrate and a typical photocathode Si reference substrate simultaneously to confirm that the effects are due to optical interactions with the substrate rather than photocathode composition or surface electron affinity differences. Growing the cathodes until the QE converges shows both the characteristic interference peaks during growth and the identical limiting case where the cathode is infinitely thick, in agreement with simulations. We also grow a cathode until the QE on Ag peaks and then stop the growth, demonstrating broadband QE enhancemen

    Colocalization of Chikungunya Virus with Its Receptor MXRA8 during Cell Attachment, Internalization, and Membrane Fusion

    No full text
    Arthritogenic alphaviruses, including chikungunya virus (CHIKV), preferentially target joint tissues and cause chronic rheumatic disease that adversely impacts the quality of life of patients. Viruses enter target cells via interaction with cell surface receptor(s), which determine the viral tissue tropism and pathogenesis. Although MXRA8 is a recently identified receptor for several clinically relevant arthritogenic alphaviruses, its detailed role in the cell entry process has not been fully explored. We found that in addition to its localization on the plasma membrane, MXRA8 is present in acidic organelles, endosomes, and lysosomes. Moreover, MXRA8 is internalized into cells without a requirement for its transmembrane and cytoplasmic domains. Confocal microscopy and live cell imaging revealed that MXRA8 interacts with CHIKV at the cell surface and then enters cells along with CHIKV particles. At the moment of membrane fusion in the endosomes, many viral particles are still colocalized with MXRA8. These findings provide insight as to how MXRA8 functions in alphavirus internalization and suggest possible targets for antiviral development. IMPORTANCE The globally distributed arthritogenic alphaviruses have infected millions of humans and induce rheumatic disease, such as severe polyarthralgia/polyarthritis, for weeks to years. Alphaviruses infect target cells through receptor(s) followed by clathrin-mediated endocytosis. MXRA8 was recently identified as an entry receptor that shapes the tropism and pathogenesis for multiple arthritogenic alphaviruses, including chikungunya virus (CHIKV). Nonetheless, the exact functions of MXRA8 during the process of viral cell entry remain undetermined. Here, we have provided compelling evidence for MXRA8 as a bona fide entry receptor that mediates the uptake of alphavirus virions. Small molecules that disrupt MXRA8-dependent binding of alphaviruses or internalization steps could serve as a platform for unique classes of antiviral drugs

    Diamond amplifier design and preliminary test results DISCLAIMER DIAMOND AMPLIFIER DESIGN AND PRELIMINARY TEST RESULTS

    No full text
    Abstract Diamond as a large band gap material can be easily made to have negative electron affinity (NEA) surface. Using a few keV primary electrons as input and a few kV bias, the NEA diamond will emit cold electrons into vacuum with a large gain. We had tested and reported the performance of the diamond amplifier in our DC system. The best amplification achieved so far was above 170. Next step of the experiment is to test the diamond amplifier in a 112 MHz superconducting RF electron gun. In this report we describe the design of the amplifier containing a DC primary gun and light optics, to be tested in our SRF gun and relevant simulations. We also provide preliminary test results of the laser and electron beam transport

    Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method

    No full text
    K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method have been found to have excellent quantum efficiency (QE) and outstanding near-atomic surface smoothness and have been employed in the VHF gun in the Advanced Photoinjector Experiment (APEX), however, their robustness in terms of their lifetime at elevated photocathode temperature has not yet been investigated. In this paper, the relationship between the lifetime of the K-Cs-Sb photocathode and the photocathode temperature has been investigated. The origin of the significant QE degradation at photocathode temperatures over 70 °C has been identified as the loss of cesium atoms from the K-Cs-Sb photocathode, based on the in situ x-ray analysis on the photocathode film during the decay process. The findings from this work will not only further the understanding of the behavior of K-Cs-Sb photocathodes at elevated temperature and help develop more temperature-robust cathodes, but also will become an important guide to the design and operation of the future high-field rf guns employing the use of such photocathodes
    corecore