1 research outputs found

    Comprehensive Study on Ultra-Wide Band Gap La<sub>2</sub>O<sub>3</sub>/ε-Ga<sub>2</sub>O<sub>3</sub> p–n Heterojunction Self-Powered Deep-UV Photodiodes for Flame Sensing

    No full text
    Solar-blind UV photodetectors have outstanding reliability and sensitivity in flame detection without interference from other signals and response quickly. Herein, we fabricated a solar-blind UV photodetector based on a La2O3/ε-Ga2O3 p–n heterojunction with a typical type-II band alignment. Benefiting from the photovoltaic effect formed by the space charge region across the junction interface, the photodetector exhibited a self-powered photocurrent of 1.4 nA at zero bias. Besides, this photodetector demonstrated excellent photo-to-dark current ratio of 2.68 × 104 under 254 nm UV light illumination and at a bias of 5 V, and a high specific detectivity of 2.31 × 1011 Jones and large responsivity of 1.67 mA/W were achieved. Importantly, the La2O3/ε-Ga2O3 heterojunction photodetector can rapidly respond to flames in milliseconds without any applied biases. Based on the performances described above, this novel La2O3/ε-Ga2O3 heterojunction is expected to be a candidate for future energy-efficient fire detection
    corecore