69 research outputs found

    Biomedical Sensor, Device and Measurement Systems

    Get PDF

    Knee anterior cruciate ligament bio stiffness measuring instrument

    Get PDF
    Aiming at the lack of timely and effective evaluation of knee anterior cruciate ligament (ACL) reconstruction, a knee ACL force and displacement measuring instrument was developed. Test experiments were carried out using a laboratory-made test platform and a robotic arm. Firstly, the importance of anterior cruciate ligament reconstruction surgery is introduced. The necessity of this kind of measuring instrument is proposed. The reliability of the lower stiffness measuring instrument under different measurement conditions in space is verified by the mechanical model of the previous ACL in-situ measurement. Then the design structure and measurement system of the instrument are introduced in detail. Finally, using the laboratory-made test platform and the UR5 robot arm and stiffness measuring instrument for the displacement and force test accuracy experiments, and the pig bone anterior cruciate ligament test and postoperative evaluation experiments, prove that the measuring instrument can be used for ACL Assessment of reconstructive surgery

    Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems

    Get PDF
    To develop high emissivity coatings on fibrous ceramic substrates with improved thermal resistance for reusable space systems, WSi2–MoSi2–Si–SiB6-borosilicate glass coatings were prepared on fibrous ZrO2 by slurry dipping and subsequent high temperature rapid sintering. A coating with 20 wt% WSi2 and 50 wt% MoSi2 presents optimal thermal stability with only 10.06 mg/cm2 mass loss and 4.0% emissivity decrease in the wavelength regime 1.27–1.73 μm after 50 h oxidation at 1773 K. The advantages of double phase metal-silicide coatings combining WSi2 and MoSi2 include improved thermal compatibility with the substrate and an enhanced glass-mediated self-healing ability

    Coordinated Beamforming with Altruistic Precoding and User Selection for MU-MIMO System

    Get PDF
    Other cell interference (OCI) degrades the achievable capacity of downlink multiuser multiple-input multiple-output (MU-MIMO) systems seriously. Among OCI mitigation schemes, methods that sacrifice ξ degrees of freedom to nullify the OCI have been proven to be helpful to improve the cell edge throughput. However, since interference nulling schemes can only improve the signal to interference plus noise ratio (SINR) of ξ users, they are not optimal in terms of average cell throughput, especially for low to medium OCI levels. We explore the question whether it is better to improve the SINR of every user in other cells rather than benefit ξ users. An altruistic precoding method to minimize the sum of generated interference for all of the other cell users is proposed with ξ degrees of freedom being sacrificed. With the altruistic precoding method, we deduce the lower bound on the capacity and solve the multicell user selection problem with a local optimal solution in which only eigenvalues of interfering channels are needed to be shared. Simulation results demonstrate that the proposed method outperforms the existing algorithms at any OCI level. Furthermore, we also analyze the best choice of degrees of freedom used to mitigate OCI through simulation

    Energy Efficiency Maximization through Cooperative Transmit and Receive Antenna Selection for Multicell MU-MIMO System

    Get PDF
    The capacity of Multiple Input Multiple Output (MIMO) system is highly related to the number of active antennas. But as the active antenna number increases, the MIMO system will consume more energy. To maximize the energy efficiency of MIMO system, we propose an antenna selection scheme which can maximize the energy efficiency of BS cluster. In the scheme, ergodic energy efficiency is derived according to large scale channel state information (CSI). Based on this ergodic energy efficiency, we introduce a cost function varied with the number of antennas, in which the effect to the energy efficiency of both the serving BS and the neighbor BS is considered. With this function, we can transform the whole system optimization problem to a sectional optimization problem and obtain a suboptimal antenna set using a heuristic algorithm. Simulation results verify that the proposed approach performs better than the comparison schemes in terms of network energy efficiency and achieves 98% network energy efficiency of the centralized antenna selection scheme. Besides, since the proposed scheme does not need the complete CSI of the neighbor BS, it can effectively reduce the signaling overhead

    Post-synthetic modification of covalent organic frameworks for CO2 electroreduction

    Get PDF
    Abstract To achieve high-efficiency catalysts for CO2 reduction reaction, various catalytic metal centres and linker molecules have been assembled into covalent organic frameworks. The amine-linkages enhance the binding ability of CO2 molecules, and the ionic frameworks enable to improve the electronic conductivity and the charge transfer along the frameworks. However, directly synthesis of covalent organic frameworks with amine-linkages and ionic frameworks is hardly achieved due to the electrostatic repulsion and predicament for the strength of the linkage. Herein, we demonstrate covalent organic frameworks for CO2 reduction reaction by modulating the linkers and linkages of the template covalent organic framework to build the correlation between the catalytic performance and the structures of covalent organic frameworks. Through the double modifications, the CO2 binding ability and the electronic states are well tuned, resulting in controllable activity and selectivity for CO2 reduction reaction. Notably, the dual-functional covalent organic framework achieves high selectivity with a maximum CO Faradaic efficiency of 97.32% and the turnover frequencies value of 9922.68 h−1, which are higher than those of the base covalent organic framework and the single-modified covalent organic frameworks. Moreover, the theoretical calculations further reveal that the higher activity is attributed to the easier formation of immediate *CO from COOH*. This study provides insights into developing covalent organic frameworks for CO2 reduction reaction

    TIRR regulates 53BP1 by masking its histone methyl-lysine binding function

    Get PDF
    53BP1 is a multi-functional double-strand break (DSB) repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumors to PARP inhibitors. Central to all 53BP1 activities is its recruitment to DSBs via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, TIRR (Tudor Interacting Repair Regulator) that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, ATM phosphorylates 53BP1 and recruits RIF1 to dissociate the 53BP1–TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to DSBs. Depletion of TIRR destabilizes 53BP1 in the nuclear soluble fraction and also alters the DSB-induced protein complex centering 53BP1. These findings identify TIRR as a new factor that influences DSB repair utilizing a unique mechanism of masking the histone methyl-lysine binding function of 53BP1

    An Acetyl-Methyl Switch Drives a Conformational Change in p53

    Get PDF
    Individual posttranslational modifications (PTMs) of p53 mediate diverse p53-dependent responses, however much less is known about the combinatorial action of adjacent modifications. Here, we describe crosstalk between the early DNA damage response mark p53K382me2 and the surrounding PTMs that modulate binding of p53 co-factors, including 53BP1 and p300. The 1.8 Å resolution crystal structure of the tandem Tudor domain (TTD) of 53BP1 in complex with p53 peptide acetylated at K381 and dimethylated at K382 (p53K381acK382me2) reveals that the dual PTM induces a conformational change in p53. The α-helical fold of p53K381acK382me2 positions the side chains of R379, K381ac, and K382me2 to interact with TTD concurrently, reinforcing a modular design of double PTM mimetics. Biochemical and NMR analyses show that other surrounding PTMs, including phosphorylation of serine/threonine residues of p53, affect association with TTD. Our findings suggest a novel PTM-driven conformation switch-like mechanism that may regulate p53 interactions with binding partners
    • …
    corecore