353 research outputs found

    Topological Photonic Phase in Chiral Hyperbolic Metamaterials

    Full text link
    Recently the possibility of achieving one-way backscatter immune transportation of light by mimicking the topological order present within certain solid state systems, such as topological insulators, has received much attention. Thus far however, demonstrations of non-trivial topology in photonics have relied on photonic crystals with precisely engineered lattice structures, periodic on the scale of the operational wavelength and composed of finely tuned, complex materials. Here we propose a novel effective medium approach towards achieving topologically protected photonic surface states robust against disorder on all length scales and for a wide range of material parameters. Remarkably, the non-trivial topology of our metamaterial design results from the Berry curvature arising from the transversality of electromagnetic waves in a homogeneous medium. Our investigation therefore acts to bridge the gap between the advancing field of topological band theory and classical optical phenomena such as the Spin Hall effect of light. The effective medium route to topological phases will pave the way for highly compact one-way transportation of electromagnetic waves in integrated photonic circuits.Comment: 11 pages, 3 figures. To appear in PR

    Three dimensional photonic Dirac points in metamaterials

    Get PDF
    Topological semimetals, representing a new topological phase that lacks a full bandgap in bulk states and exhibiting nontrivial topological orders, recently have been extended to photonic systems, predominantly in photonic crystals and to a lesser extent, metamaterials. Photonic crystal realizations of Dirac degeneracies are protected by various space symmetries, where Bloch modes span the spin and orbital subspaces. Here, we theoretically show that Dirac points can also be realized in effective media through the intrinsic degrees of freedom in electromagnetism under electromagnetic duality. A pair of spin polarized Fermi arc like surface states is observed at the interface between air and the Dirac metamaterials. These surface states show linear k-space dispersion relation, resulting in nearly diffraction-less propagation. Furthermore, eigen reflection fields show the decomposition from a Dirac point to two Weyl points. We also find the topological correlation between a Dirac point and vortex/vector beams in classic photonics. The theoretical proposal of photonic Dirac point lays foundation for unveiling the connection between intrinsic physics and global topology in electromagnetism.Comment: 15 pages, 5 figure

    Second-order topological insulator and fragile topology in topological circuitry simulation

    Full text link
    Second-order topological insulators (SOTIs) are the topological phases of matter in d dimensions that manifest (d-2)-dimensional localized modes at the intersection of the edges. We show that SOTIs can be designed via stacked Chern insulators with opposite chiralities connected by interlayer coupling. To characterize the bulk-corner correspondence, we establish a Jacobian-transformed nested Wilson loop method and an edge theory that are applicable to a wider class of higher-order topological systems. The corresponding topological invariant admits a filling anomaly of the corner modes with fractional charges. The system manifests a fragile topological phase characterized by the absence of a Wannier gap in the Wilson loop spectrum. Furthermore, we argue that the proposed approach can be generalized to multilayers. Our work offers perspectives for exploring and understanding higher-order topological phenomena.Comment: 5 pages, 4 figure

    tSF: Transformer-based Semantic Filter for Few-Shot Learning

    Full text link
    Few-Shot Learning (FSL) alleviates the data shortage challenge via embedding discriminative target-aware features among plenty seen (base) and few unseen (novel) labeled samples. Most feature embedding modules in recent FSL methods are specially designed for corresponding learning tasks (e.g., classification, segmentation, and object detection), which limits the utility of embedding features. To this end, we propose a light and universal module named transformer-based Semantic Filter (tSF), which can be applied for different FSL tasks. The proposed tSF redesigns the inputs of a transformer-based structure by a semantic filter, which not only embeds the knowledge from whole base set to novel set but also filters semantic features for target category. Furthermore, the parameters of tSF is equal to half of a standard transformer block (less than 1M). In the experiments, our tSF is able to boost the performances in different classic few-shot learning tasks (about 2% improvement), especially outperforms the state-of-the-arts on multiple benchmark datasets in few-shot classification task

    Modeling and Analysis of Bifurcation in a Delayed Worm Propagation Model

    Get PDF
    A delayed worm propagation model with birth and death rates is formulated. The stability of the positive equilibrium is studied. Through theoretical analysis, a critical value Ď„0 of Hopf bifurcation is derived. The worm propagation system is locally asymptotically stable when time delay is less than Ď„0. However, Hopf bifurcation appears when time delay Ď„ passes the threshold Ď„0, which means that the worm propagation system is unstable and out of control. Consequently, time delay should be adjusted to be less than Ď„0 to ensure the stability of the system stable and better prediction of the scale and speed of Internet worm spreading. Finally, numerical and simulation experiments are presented to simulate the system, which fully support our analysis

    Plasmon Weyl Degeneracies in Magnetized Plasma

    Get PDF
    In this letter, we report the presence of novel type of plasmon Weyl points in a naturally existing material - magnetized plasma. In such a medium, conventional, purely longitudinal bulk plasma oscillations exists only along the direction of applied magnetic field (z direction). With strong enough magnetic field, there exist helical propagating modes along z direction with circular polarizations. The orthogonality between the longitudinal bulk plasmon mode and the transverse helical propagating modes guarantees their crossing at the bulk plasmon frequency. These crossing points, embedded in the bulk plasmon dispersion line, serve as monopoles in the k space - the so called Weyl points. These Weyl points lead to salient observable features. These include the highly intriguing observation that, at a magnetized plasma surface which is parallel to the applied magnetic field, reflection of an electromagnetic wave with in-plane wave-vector close to the Weyl points exhibits chiral behavior only in half of the k plane, which is bounded by the projection of the bulk plasmon dispersion line. We also verify the presence of 'Fermi arcs' connecting the two Weyl points with opposite chiralities when magnetized plasma interfaces with trivial photonic materials. Our study introduces the concept of Weyl photonics into homogeneous strongly dispersive photonic materials, which could pave way for realizing new topological photonic devices.Comment: 13 pages, 5 figure

    High Performance Metasurface Antennas

    Get PDF
    Recently, metasurfaces (MSs) have received tremendous attention because their electromagnetic properties can be controlled at will. Generally, metasurface with hyperbolic phase distributions, namely, focusing metasurface, can be used to design high-gain antennas. Besides, metasurface has the ability of controlling the polarization state of electromagnetic wave. In this chapter, we first propose a new ultrathin broadband reflected MS and take it into application for high-gain planar antenna. Then, we propose multilayer multifunctional transmitted MSs to simultaneously enhance the gain and transform the linear polarization to circular polarization of the patch antenna. This kind of high-gain antenna eliminates the feed-block effect of the reflected ones
    • …
    corecore