78,459 research outputs found
Recommended from our members
Filtering for uncertain 2-D discrete systems with state delays
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.This paper is concerned with the problem of robust H∞ filtering for two-dimensional (2-D) discrete systems with time-delays in states. The 2-D systems under consideration are described in terms of the well-known Fornasini–Marchesini local state-space (FMLSS) models with time-delays. Our attention is focused on the design of a full-order filter such that the filtering error system is guaranteed to be asymptotically stable with a prescribed H∞ disturbance attenuation performance. Sufficient conditions for the existence of desired filters are established by using a linear matrix inequality (LMI) approach, and the corresponding filter design problem is then cast into a convex optimization problem that can be efficiently solved by resorting to some standard numerical software. Furthermore, the obtained results are extended to more general cases where the system matrices contain either polytopic or norm-bounded parameter uncertainties. A simulation example is provided to illustrate the effectiveness of the proposed design method.This work was partially supported by the National Natural Science Foundation of China (60504008), Program for New Century Excellent Talents in University of China and the Postdoctoral Science Foundation of China (20060390231)
Improving the security of secure direct communication based on secret transmitting order of particles
We analyzed the security of the secure direct communication protocol based on
secret transmitting order of particles recently proposed by Zhu, Xia, Fan, and
Zhang [Phys. Rev. A 73, 022338 (2006)], and found that this scheme is insecure
if an eavesdropper, say Eve, wants to steal the secret message with Trojan
horse attack strategies. The vital loophole in this scheme is that the two
authorized users check the security of their quantum channel only once. Eve can
insert another spy photon, an invisible photon or a delay one in each photon
which the sender Alice sends to the receiver Bob, and capture the spy photon
when it returns from Bob to Alice. After the authorized users check the
security, Eve can obtain the secret message according to the information about
the transmitting order published by Bob. Finally, we present a possible
improvement of this protocol.Comment: 4 pages, no figur
Robust H-infinity filtering for 2-D systems with intermittent measurements
This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac
Bose-Einstein condensates in RF-dressed adiabatic potentials
Bose-Einstein condensates of Rb atoms are transferred into
radio-frequency (RF) induced adiabatic potentials and the properties of the
corresponding dressed states are explored. We report on measurements of the
spin composition of dressed condensates. We also show that adiabatic potentials
can be used to trap atom gases in novel geometries, including suspending a
cigar-shaped cloud above a curved sheet of atoms
X(1835): A Natural Candidate of 's Second Radial Excitation
Recently BES collaboration observed one interesting resonance X(1835). We
point out that its mass, total width, production rate and decay pattern favor
its assignment as the second radial excitation of meson very
naturally
Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol
The participant attack is the most serious threat for quantum secret-sharing
protocols. We present a method to analyze the security of quantum
secret-sharing protocols against this kind of attack taking the scheme of
Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59 1829 (1999)] as an
example. By distinguishing between two mixed states, we derive the necessary
and sufficient conditions under which a dishonest participant can attain all
the information without introducing any error, which shows that the HBB
protocol is insecure against dishonest participants. It is easy to verify that
the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)]
is a special example of our results. To demonstrate our results further, we
construct an explicit attack scheme according to the necessary and sufficient
conditions. Our work completes the security analysis of the HBB protocol, and
the method presented may be useful for the analysis of other similar protocols.Comment: Revtex, 7 pages, 3 figures; Introduction modifie
An approach to exact solutions of the time-dependent supersymmetric two-level three-photon Jaynes-Cummings model
By utilizing the property of the supersymmetric structure in the two-level
multiphoton Jaynes-Cummings model, an invariant is constructed in terms of the
supersymmetric generators by working in the sub-Hilbert-space corresponding to
a particular eigenvalue of the conserved supersymmetric generators. We obtain
the exact solutions of the time-dependent Schr\"{o}dinger equation which
describes the time-dependent supersymmetric two-level three-photon
Jaynes-Cummings model (TLTJCM) by using the invariant-related unitary
transformation formulation. The case under the adiabatic approximation is also
discussed.
Keywords: Supersymmetric Jaynes-Cummings model; exact solutions; invariant
theory; geometric phase factor; adiabatic approximationComment: 7 pages, Late
- …