623 research outputs found

    TORCH: A Cherenkov Based Time-of-Flight Detector

    Get PDF
    TORCH is a novel high-precision time-of-flight detector suitable for large area applications and covering the momentum range up to 10 GeV/c. The concept uses Cherenkov photons produced in a fused silica radiator which are propagated to focussing optics coupled to fast photodetectors. For this purpose, custom MCP-PMTs are being produced in collaboration with industrial partners. The development is divided into three phases. Phase 1 addresses the lifetime requirements for TORCH, Phase 2 will customize the MCP-PMT granularity and Phase 3 will deliver prototypes that meet the TORCH requirements. Phase 1 devices have been successfully delivered and initial tests show stable gain performance for integrated anode current >5 C/cm2 and a single photon time resolution of ≤ 30 ps. Initial simulations indicate the single photon timing resolution of the TORCH detector will be ∼70 ps

    Telecommunications in Scotland : auditing the issues

    Get PDF
    The study upon which this article is based was concerned with the uptake and use of telecommunication services in the Scottish economy. It was also concerned with the formulation and implementation of public policy designed to encourage the uptake of telecommunication services. Its specific objectives were : (a) To uncover telecommunications issues as perceived at the level of individual businesses in Scotland. This part of the work was undertaken through a survey of Scottish Business in six LEC areas and in three sectors - Software, Mechanical Engineering and Textiles. (b) To uncover telecommunications issues as perceived in interviews with officials in selected organisations which have key representative, advisory and policy influencing roles within the Scottish economy. This part of the work was conducted through interviews

    The Cosmological Constant and Horava-Lifshitz Gravity

    Full text link
    Horava-Lifshitz theory of gravity with detailed balance is plagued by the presence of a negative bare (or geometrical) cosmological constant which makes its cosmology clash with observations. We argue that adding the effects of the large vacuum energy of quantum matter fields, this bare cosmological constant can be approximately compensated to account for the small observed (total) cosmological constant. Even though we cannot address the fine-tuning problem in this way, we are able to establish a relation between the smallness of observed cosmological constant and the length scale at which dimension 4 corrections to the Einstein gravity become significant for cosmology. This scale turns out to be approximately 5 times the Planck length for an (almost) vanishing observed cosmological constant and we therefore argue that its smallness guarantees that Lorentz invariance is broken only at very small scales. We are also able to provide a first rough estimation for the infrared values of the parameters of the theory μ\mu and LambdawLambda_w.Comment: 9 pages, Late

    A note on Friedmann equation of FRW universe in deformed Horava-Lifshitz gravity from entropic force

    Full text link
    With entropic interpretation of gravity proposed by Verlinde, we obtain the Friedmann equation of the Friedmann-Robertson-Walker universe for the deformed Ho\v{r}ava-Lifshitz gravity. It is shown that, when the parameter of Ho\v{r}ava-Lifshitz gravity ω→∞\omega\rightarrow \infty, the modified Friedmann equation will go back to the one in Einstein gravity. This results may imply that the entropic interpretation of gravity is effective for the deformed Ho\v{r}ava-Lifshitz gravity.Comment: 9 pages, no figure

    Lorenz-like systems and classical dynamical equations with memory forcing: a new point of view for singling out the origin of chaos

    Full text link
    A novel view for the emergence of chaos in Lorenz-like systems is presented. For such purpose, the Lorenz problem is reformulated in a classical mechanical form and it turns out to be equivalent to the problem of a damped and forced one dimensional motion of a particle in a two-well potential, with a forcing term depending on the ``memory'' of the particle past motion. The dynamics of the original Lorenz system in the new particle phase space can then be rewritten in terms of an one-dimensional first-exit-time problem. The emergence of chaos turns out to be due to the discontinuous solutions of the transcendental equation ruling the time for the particle to cross the intermediate potential wall. The whole problem is tackled analytically deriving a piecewise linearized Lorenz-like system which preserves all the essential properties of the original model.Comment: 48 pages, 25 figure

    TORCH: A Cherenkov Based Time-of-Flight Detector

    Get PDF
    TORCH is a novel high-precision time-of-flight detector suitable for large area applications and covering the momentum range up to 10 GeV/c. The concept uses Cherenkov photons produced in a fused silica radiator which are propagated to focussing optics coupled to fast photodetectors. For this purpose, custom MCP-PMTs are being produced in collaboration with industrial partners. The development is divided into three phases. Phase 1 addresses the lifetime requirements for TORCH, Phase 2 will customize the MCP-PMT granularity and Phase 3 will deliver prototypes that meet the TORCH requirements. Phase 1 devices have been successfully delivered and initial tests show stable gain performance for integrated anode current >5 C/cm2 and a single photon time resolution of ≤ 30 ps. Initial simulations indicate the single photon timing resolution of the TORCH detector will be ∼70 ps

    Caustic avoidance in Horava-Lifshitz gravity

    Full text link
    There are at least four versions of Horava-Lishitz gravity in the literature. We consider the version without the detailed balance condition with the projectability condition and address one aspect of the theory: avoidance of caustics for constant time hypersurfaces. We show that there is no caustic with plane symmetry in the absence of matter source if \lambda\ne 1. If \lambda=1 is a stable IR fixed point of the renormalization group flow then \lambda is expected to deviate from 1 near would-be caustics, where the extrinsic curvature increases and high-energy corrections become important. Therefore, the absence of caustics with \lambda\ne 1 implies that caustics cannot form with this symmetry in the absence of matter source. We argue that inclusion of matter source will not change the conclusion. We also argue that caustics with codimension higher than one will not form because of repulsive gravity generated by nonlinear higher curvature terms. These arguments support our conjecture that there is no caustic for constant time hypersurfaces. Finally, we discuss implications to the recently proposed scenario of ``dark matter as integration constant''.Comment: 19 pages; extended to general z \geq 3, typos corrected (v2); version accepted for publication in JCAP (v3

    The Black Hole and Cosmological Solutions in IR modified Horava Gravity

    Full text link
    Recently Horava proposed a renormalizable gravity theory in four dimensions which reduces to Einstein gravity with a non-vanishing cosmological constant in IR but with improved UV behaviors. Here, I study an IR modification which breaks "softly" the detailed balance condition in Horava model and allows the asymptotically flat limit as well. I obtain the black hole and cosmological solutions for "arbitrary" cosmological constant that represent the analogs of the standard Schwartzschild-(A)dS solutions which can be asymptotically (A)dS as well as flat and I discuss some thermodynamical properties. I also obtain solutions for FRW metric with an arbitrary cosmological constant. I study its implication to the dark energy and find that it seems to be consistent with current observational data.Comment: Footnote 5 about the the very meaning of the horizons and Hawking temperature is added; Accepted in JHE

    Non-minimal kinetic coupling and Chaplygin gas cosmology

    Full text link
    In the frame of the scalar field model with non minimal kinetic coupling to gravity, we study the cosmological solutions of the Chaplygin gas model of dark energy. By appropriately restricting the potential, we found the scalar field, the potential and coupling giving rise to the Chaplygin gas solution. Extensions to the generalized and modified Chaplygin gas have been made.Comment: 18 pages, 2 figures. To appear in EPJ
    • …
    corecore