43,471 research outputs found

    Recommender Systems with Characterized Social Regularization

    Full text link
    Social recommendation, which utilizes social relations to enhance recommender systems, has been gaining increasing attention recently with the rapid development of online social network. Existing social recommendation methods are based on the fact that users preference or decision is influenced by their social friends' behaviors. However, they assume that the influences of social relation are always the same, which violates the fact that users are likely to share preference on diverse products with different friends. In this paper, we present a novel CSR (short for Characterized Social Regularization) model by designing a universal regularization term for modeling variable social influence. Our proposed model can be applied to both explicit and implicit iteration. Extensive experiments on a real-world dataset demonstrate that CSR significantly outperforms state-of-the-art social recommendation methods.Comment: to appear in CIKM 201

    Combining Spot and Futures Markets: A Hybrid Market Approach to Dynamic Spectrum Access

    Full text link
    Dynamic spectrum access is a new paradigm of secondary spectrum utilization and sharing. It allows unlicensed secondary users (SUs) to exploit opportunistically the under-utilized licensed spectrum. Market mechanism is a widely-used promising means to regulate the consuming behaviours of users and, hence, achieves the efficient allocation and consumption of limited resources. In this paper, we propose and study a hybrid secondary spectrum market consisting of both the futures market and the spot market, in which SUs (buyers) purchase under-utilized licensed spectrum from a spectrum regulator, either through predefined contracts via the futures market, or through spot transactions via the spot market. We focus on the optimal spectrum allocation among SUs in an exogenous hybrid market that maximizes the secondary spectrum utilization efficiency. The problem is challenging due to the stochasticity and asymmetry of network information. To solve this problem, we first derive an off-line optimal allocation policy that maximizes the ex-ante expected spectrum utilization efficiency based on the stochastic distribution of network information. We then propose an on-line VickreyCClarkeCGroves (VCG) auction that determines the real-time allocation and pricing of every spectrum based on the realized network information and the pre-derived off-line policy. We further show that with the spatial frequency reuse, the proposed VCG auction is NP-hard; hence, it is not suitable for on-line implementation, especially in a large-scale market. To this end, we propose a heuristics approach based on an on-line VCG-like mechanism with polynomial-time complexity, and further characterize the corresponding performance loss bound analytically. We finally provide extensive numerical results to evaluate the performance of the proposed solutions.Comment: This manuscript is the complete technical report for the journal version published in INFORMS Operations Researc

    Efficient Evaluation of Dynamic Impedance

    Get PDF
    An efficient algorithm for the calculation of dynamic impedance of viscoelastic multilayered media is presented. The wavenumber integral over infinite limits are split into two subintervals, the first one is dominated by the plane waves while the second is dominated by the surface Rayleigh waves. Though the integrand of the first one is characterized by dense oscillations and sharp peaks, its integration covers very narrow range and can be evaluated sufficiently accurately with dense sampling points. The integrand of second one varies very smoothly and can be determined analytically, the integration is easy to perform. The advantages of the present approach is that high degree of accuracy could be achieved, while the computational effort is reduced to a great extent

    Valley-Hall photonic topological insulators with dual-band kink states

    Full text link
    Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insulators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing
    • …
    corecore