480 research outputs found

    Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux

    Get PDF
    This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|āˆ‡ui pāˆ’2āˆ‡ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when blow-up does occur, we obtain the upper and lower bounds for the blow-up time. This paper generalizes the previous results

    A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B

    Get PDF
    Satellite-based detection of methane (CH4) point sources is crucial in identifying and mitigating anthropogenic emissions of CH4, a potent greenhouse gas. Previous studies have indicated the presence of CH4 point source emissions from coal mines in Shanxi, China, which is an important source region with large CH4 emissions, but a comprehensive survey has remained elusive. This study aims to conduct a survey of CH4 point sources over Shanxi's coal mines based on observations of the Advanced Hyperspectral Imager (AHSI) on board the Gaofen-5B satellite (GF-5B/AHSI) between 2021 and 2023. The spectral shift in centre wavelength and change in full width at half-maximum (FWHM) from the nominal design values are estimated for all spectral channels, which are used as inputs for retrieving the enhancement of the column-averaged dry-air mole fraction of CH4 (Ī”XCH4) using a matched-filter-based algorithm. Our results show that the spectral calibration on GF-5B/AHSI reduced estimation biases of the emission flux rate by up to 5.0ā€‰%. We applied the flood-fill algorithm to automatically extract emission plumes from Ī”XCH4 maps. We adopted the integrated mass enhancement (IME) model to estimate the emission flux rate values from each CH4 point source. Consequently, we detected CH4 point sources in 32 coal mines with 93 plume events in Shanxi province. The estimated emission flux rate ranges from 761.78ā€‰Ā±ā€‰185.00 to 12ā€‰729.12ā€‰Ā±ā€‰4658.13ā€‰kgā€‰hāˆ’1. Our results show that wind speed is the dominant source of uncertainty contributing about 84.84ā€‰% to the total uncertainty in emission flux rate estimation. Interestingly, we found a number of false positive detections due to solar panels that are widely spread in Shanxi. This study also evaluates the accuracy of wind fields in ECMWF ERA5 reanalysis by comparing them with a ground-based meteorological station. We found a large discrepancy, especially in wind direction, suggesting that incorporating local meteorological measurements into the study CH4 point source are important to achieve high accuracy. The study demonstrates that GF-5B/AHSI possesses capabilities for monitoring large CH4 point sources over complex surface characteristics in Shanxi.</p

    Cardiac magnetic resonance analysis of left atrium function in patients with pre-apical hypertrophic cardiomyopathy

    Get PDF
    Background: Patients presenting with unexplained T wave inversion on electrocardiogram combined with thickened left ventricular apex but less than 15 mm had been proposed as a preclinical scope of apical hypertrophy cardiomyopathy (pre-ApHCM). However, analysis of left atrial (LA) function in these patients has not been studied. This study aims to evaluate the LA function in pre-ApHCM patients and compare it with patients with ApHCM using cardiac magnetic resonance (CMR) imaging. Methods: In this retrospective case-control study, a total of 3,593 CMR reports from Beijing Anzhen Hospital, Capital Medical University, China were reviewed. Finally, 31 pre-ApHCM patients were identified and 40 ApHCM and 31 normal controls were included for comparison. LA volumetric and strain were analyzed by CMR. Two-tailed one-way ANOVA was used to analyze the difference of three groups. Pearson correlation test was used for correlation analysis. Results: All of the volumetric parameters in pre-ApHCM group were higher than those in control group. LA reservoir (LA total EF, Īµs) and conduit function (LA passive EF, Īµe) parameters, were significantly different among the three groups, which were the lowest in the ApHCM group, intermediate in the pre-ApHCM group, and the highest in the control group ((all P<0.001). Compared with the control group, the LA booster pump function, both the booster EF and booster pump strain (Īµa) in ApHCM were impaired (P=0.003 and P=0.002 respectively). Meanwhile, only the Īµa was impaired (P=0.016) while LA booster EF was not (P=0.064) in the pre-ApHCM group, neither Īµa nor the booster EF show difference between the ApHCM and pre-ApHCM (P=0.272 and P=0.518 respectively). Conclusions: LA function features in pre-ApHCM patients were similar to ApHCM but different from the normal controls. In pre-ApHCM and ApHCM patients, LA reservoir and conduit function impaired earlier before left atrium enlarged and decreased progressively as apex thickens. These findings may help to understand the LA functional change from pre-ApHCM to ApHCM, and to detect subclinical changes in patients with pre-ApHCM before overt hypertrophy or clinical symptoms develop

    Minimalist and High-Quality Panoramic Imaging with PSF-aware Transformers

    Full text link
    High-quality panoramic images with a Field of View (FoV) of 360-degree are essential for contemporary panoramic computer vision tasks. However, conventional imaging systems come with sophisticated lens designs and heavy optical components. This disqualifies their usage in many mobile and wearable applications where thin and portable, minimalist imaging systems are desired. In this paper, we propose a Panoramic Computational Imaging Engine (PCIE) to address minimalist and high-quality panoramic imaging. With less than three spherical lenses, a Minimalist Panoramic Imaging Prototype (MPIP) is constructed based on the design of the Panoramic Annular Lens (PAL), but with low-quality imaging results due to aberrations and small image plane size. We propose two pipelines, i.e. Aberration Correction (AC) and Super-Resolution and Aberration Correction (SR&AC), to solve the image quality problems of MPIP, with imaging sensors of small and large pixel size, respectively. To provide a universal network for the two pipelines, we leverage the information from the Point Spread Function (PSF) of the optical system and design a PSF-aware Aberration-image Recovery Transformer (PART), in which the self-attention calculation and feature extraction are guided via PSF-aware mechanisms. We train PART on synthetic image pairs from simulation and put forward the PALHQ dataset to fill the gap of real-world high-quality PAL images for low-level vision. A comprehensive variety of experiments on synthetic and real-world benchmarks demonstrates the impressive imaging results of PCIE and the effectiveness of plug-and-play PSF-aware mechanisms. We further deliver heuristic experimental findings for minimalist and high-quality panoramic imaging. Our dataset and code will be available at https://github.com/zju-jiangqi/PCIE-PART.Comment: The dataset and code will be available at https://github.com/zju-jiangqi/PCIE-PAR

    Mitochondrial dysfunction and therapeutic perspectives in osteoporosis

    Get PDF
    Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (FigureĀ 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising

    Regulation of Kir Channels by Intracellular pH and Extracellular K+: Mechanisms of Coupling

    Get PDF
    ROMK channels are regulated by internal pH (pHi) and extracellular K+ (K+o). The mechanisms underlying this regulation were studied in these channels after expression in Xenopus oocytes. Replacement of the COOH-terminal portion of ROMK2 (Kir1.1b) with the corresponding region of the pH-insensitive channel IRK1 (Kir 2.1) produced a chimeric channel (termed C13) with enhanced sensitivity to inhibition by intracellular H+, increasing the apparent pKa for inhibition by āˆ¼0.9 pH units. Three amino acid substitutions at the COOH-terminal end of the second transmembrane helix (I159V, L160M, and I163M) accounted for these effects. These substitutions also made the channels more sensitive to reduction in K+o, consistent with coupling between the responses to pHi and K+o. The ion selectivity sequence of the activation of the channel by cations was K+ ā‰… Rb+ > NH4+ >> Na+, similar to that for ion permeability, suggesting an interaction with the selectivity filter. We tested a model of coupling in which a pH-sensitive gate can close the pore from the inside, preventing access of K+ from the cytoplasm and increasing sensitivity of the selectivity filter to removal of K+o. We mimicked closure of this gate using positive membrane potentials to elicit block by intracellular cations. With K+o between 10 and 110 mM, this resulted in a slow, reversible decrease in conductance. However, additional channel constructs, in which inward rectification was maintained but the pH sensor was abolished, failed to respond to voltage under the same conditions. This indicates that blocking access of intracellular K+ to the selectivity filter cannot account for coupling. The C13 chimera was 10 times more sensitive to extracellular Ba2+ block than was ROMK2, indicating that changes in the COOH terminus affect ion binding to the outer part of the pore. This effect correlated with the sensitivity to inactivation by H+. We conclude that decreasing pHI increases the sensitivity of ROMK2 channels to K+o by altering the properties of the selectivity filter

    Myocardial extracellular volume fraction analysis in doxorubicin-induced beagle models: comparison of dual-energy CT with equilibrium contrast-enhanced single-energy CT

    Get PDF
    Background: Dual-energy CT (DECT) permits the simultaneous operation of two different kV levels, providing a potential method toward the assessment of diffuse myocardial fibrosis. The purpose of this study was to determine the accuracy of DECT for evaluation of the myocardial extracellular volume (ECV) fraction in comparison with single-energy CT (SECT). Methods: Myocardial ECV was quantified in fifteen dogs using DECT and dynamic equilibrium SECT before and after doxorubicin administration. Cardiac magnetic resonance imaging (CMRI) was used to assess myocardial function. The histological collagen volume fraction (CVF) was calculated as the gold standard. The Bland-Altman analysis was performed to compare the agreement between DECT-ECV and SECTECV. The association among ECV values derived from DECT and SECT, CVF, and left ventricular ejection fraction (LVEF) were determined by correlation analysis. The variations of these values were evaluated using repeated ANOVA. Results: The DECT- and SECT-ECV were increased with the elongation of modeling time (pre-modeling vs. 16-week models vs. 24-week models: DECT-ECV 24.1%Ā±1.1%, 35.1%Ā±1.3% and 37.6%Ā±1.4%; SECTECV 22.9%Ā±0.8%, 33.6%Ā±1.2% and 36.3%Ā±1.0%; n=30 in per-subject analysis, all P<0.05). Both ECV values of DECT and SECT correlated well with the histological CVF results (R=0.935 and 0.952 for the DECT-ECV and SECT-ECV; all P<0.001; n=13). Bland-Altman plots showed no significant differences between DECT- and SECT-ECV. Conclusions: DECT-ECV correlated well with both SECT-ECV and histology, showing the feasibility of DECT in evaluating doxorubicin-induced diffuse myocardial interstitial fibrosis

    Synthesis and magnetic properties of Zr doped ZnO Nanoparticles

    Get PDF
    Zr doped ZnO nanoparticles are prepared by the sol-gel method with post-annealing. X-ray diffraction results show that all samples are the typical hexagonal wurtzite structure without any other new phase, as well as the Zr atoms have successfully entered into the ZnO lattices instead of forming other lattices. Magnetic measurements indicate that all the doping samples show room temperature ferromagnetism and the pure ZnO is paramagneism. The results of Raman and X-ray photoelectron spectroscopy indicate that there are a lot of oxygen vacancies in the samples by doping element of Zr. It is considered that the observed ferromagnetism is related to the doping induced oxygen vacancies
    • ā€¦
    corecore