451 research outputs found

    The Journey of the Potato Tuberworm Around the World

    Get PDF
    Potato (Solanum tuberosum L.) production is challenged by many factors including pests and diseases. Among insect pests, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), known as the potato tuber worm or potato tuber moth, is considered one of the most important potato pests worldwide. Phthorimaea operculella is a cosmopolitan pest of solanaceous crops including potato, tomato (Solanum lycopersicum L.), and other important row crops. Adults oviposit in leaves, stems, and tubers; immature stage mines leaves causing foliar damage, but most importantly, burrows into tubers rendering them unmarketable. Currently, pest management practices are effective in controlling P. operculella, but the effectiveness depends on many factors that will be discussed later in this chapter. Each section includes up-to-date information related to P. operculella biology, ecology, and control, including origins, host range, life cycle, distribution, seasonal dynamics, and control methods

    MIRACLE: Multi-task Learning based Interpretable Regulation of Autoimmune Diseases through Common Latent Epigenetics

    Full text link
    DNA methylation is a crucial regulator of gene transcription and has been linked to various diseases, including autoimmune diseases and cancers. However, diagnostics based on DNA methylation face challenges due to large feature sets and small sample sizes, resulting in overfitting and suboptimal performance. To address these issues, we propose MIRACLE, a novel interpretable neural network that leverages autoencoder-based multi-task learning to integrate multiple datasets and jointly identify common patterns in DNA methylation. MIRACLE's architecture reflects the relationships between methylation sites, genes, and pathways, ensuring biological interpretability and meaningfulness. The network comprises an encoder and a decoder, with a bottleneck layer representing pathway information as the basic unit of heredity. Customized defined MaskedLinear Layer is constrained by site-gene-pathway graph adjacency matrix information, which provides explainability and expresses the site-gene-pathway hierarchical structure explicitly. And from the embedding, there are different multi-task classifiers to predict diseases. Tested on six datasets, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, psoriasis, and type 1 diabetes, MIRACLE demonstrates robust performance in identifying common functions of DNA methylation across different phenotypes, with higher accuracy in prediction dieseases than baseline methods. By incorporating biological prior knowledge, MIRACLE offers a meaningful and interpretable framework for DNA methylation data analysis in the context of autoimmune diseases

    Fine-grained Recognition with Learnable Semantic Data Augmentation

    Full text link
    Fine-grained image recognition is a longstanding computer vision challenge that focuses on differentiating objects belonging to multiple subordinate categories within the same meta-category. Since images belonging to the same meta-category usually share similar visual appearances, mining discriminative visual cues is the key to distinguishing fine-grained categories. Although commonly used image-level data augmentation techniques have achieved great success in generic image classification problems, they are rarely applied in fine-grained scenarios, because their random editing-region behavior is prone to destroy the discriminative visual cues residing in the subtle regions. In this paper, we propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem. Specifically, we produce diversified augmented samples by translating image features along semantically meaningful directions. The semantic directions are estimated with a covariance prediction network, which predicts a sample-wise covariance matrix to adapt to the large intra-class variation inherent in fine-grained images. Furthermore, the covariance prediction network is jointly optimized with the classification network in a meta-learning manner to alleviate the degenerate solution problem. Experiments on four competitive fine-grained recognition benchmarks (CUB-200-2011, Stanford Cars, FGVC Aircrafts, NABirds) demonstrate that our method significantly improves the generalization performance on several popular classification networks (e.g., ResNets, DenseNets, EfficientNets, RegNets and ViT). Combined with a recently proposed method, our semantic data augmentation approach achieves state-of-the-art performance on the CUB-200-2011 dataset. The source code will be released
    corecore