122 research outputs found

    Organoids as a Model for Precision Medicine in Malignant Pleural Mesothelioma: Where Are We Today?

    Get PDF
    MPM is an aggressive tumor originating from pleural mesothelial cells. A characteristic feature of the disease is the dominant prevalence of therapeutically intractable inactivating alterations in TSGs, making MPM one of the most difficult cancers to treat and the epitome of a cancer characterized by a significant lack of therapy options and an extremely poor prognosis (5-year survival rate of only 5% to 10%). Extensive interpatient heterogeneity poses another major challenge for targeted therapy of MPM, warranting stratified therapy for specific subgroups of MPM patients. Accurate preclinical models are critical for the discovery of new therapies and the development of personalized medicine. Organoids, an in vitro 'organ-like' 3D structure derived from patient tumor tissue that faithfully mimics the biology and complex architecture of cancer and largely overcomes the limitations of other existing models, are the next-generation tumor model. Although organoids have been successfully produced and used in many cancers, the development of MPM organoids is still in its infancy. Here, we provide an overview of recent advances in cancer organoids, focusing on the progress and challenges in MPM organoid development. We also elaborate the potential of MPM organoids for understanding MPM pathobiology, discovering new therapeutic targets, and developing personalized treatments for MPM patients

    Estimated Grass Grazing Removal Rate in a Semiarid Eurasian Steppe Watershed as Influenced by Climate

    Get PDF
    Grazing removal rate of grasses needs to be determined for various climate conditions to address eco-environmental concerns (e.g., desertification) related to steppe grassland degradation. The conventional approach, which requires survey data on animal species and heads as well as grass consumption per individual animal, is too costly and time-consuming to be applied at a watershed scale. The objective of this study was to present a new approach that can be used to estimate grazing removal rate with no requirement of animal-related data. The application of this new approach was demonstrated in a Eurasian semiarid typical-steppe watershed for an analysis period of 2000 to 2010. The results indicate that the removal rate tended to become larger, but its temporal variation tended to become smaller, from the upstream to downstream. Averaged across the watershed, the removal rate ranged from 63.9 to 401.0 g DM m-2 (or 22.4 to 60.9%) during the analysis period. As expected, the removal rate in an atmospherically wetter year was higher than that in an atmospherically drier year. Nevertheless, none of the eleven analysis years had a removal rate higher than the threshold value of 65%, above which the risk of grassland degradation would become much greater

    Schedule-Dependent Treatment Increases Chemotherapy Efficacy in Malignant Pleural Mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a rare but aggressive thoracic malignancy with limited treatment options. One of the standard treatments for MPM is chemotherapy, which consists of concurrent treatment with pemetrexed and cisplatin. Pemetrexed limits tumor growth by inhibiting critical metabolic enzymes involved in nucleotide synthesis. Cisplatin causes direct DNA damage, such as intra-strand and inter-strand cross-links, which are repaired by the nucleotide excision repair pathway, which depends on relatively high nucleotide levels. We hypothesized that prolonged pretreatment with pemetrexed might deplete nucleotide pools, thereby sensitizing cancer cells to subsequent cisplatin treatment. The MPM cell lines ACC-MESO-1 and NCI-H28 were treated for 72 h with pemetrexed. Three treatment schedules were evaluated by initiating 24 h of cisplatin treatment at 0 h (concomitant), 24 h, and 48 h relative to pemetrexed treatment, resulting in either concomitant administration or pemetrexed pretreatment for 24 h or 48 h, respectively. Multicolor flow cytometry was performed to detect γH2AX (phosphorylation of histone H2AX), a surrogate marker for the activation of the DNA damage response pathway. DAPI staining of DNA was used to analyze cell cycle distribution. Forward and side scatter intensity was used to distinguish subpopulations based on cellular size and granularity, respectively. Our study revealed that prolonged pemetrexed pretreatment for 48 h prior to cisplatin significantly reduced long-term cell growth. Specifically, pretreatment for 48 h with pemetrexed induced a cell cycle arrest, mainly in the G2/M phase, accumulation of persistent DNA damage, and induction of a senescence phenotype. The present study demonstrates that optimizing the treatment schedule by pretreatment with pemetrexed increases the efficacy of the pemetrexed-cisplatin combination therapy in MPM. We show that the observed benefits are associated with the persistence of treatment-induced DNA damage. Our study suggests that an adjustment of the treatment schedule could improve the efficacy of the standard chemotherapy regimen for MPM and might improve patient outcomes

    HSP90/AXL/eIF4E-regulated unfolded protein response as an acquired vulnerability in drug-resistant KRAS-mutant lung cancer

    Get PDF
    Drug resistance and tumor heterogeneity are formidable challenges in cancer medicine, which is particularly relevant for KRAS-mutant cancers, the epitome of malignant tumors recalcitrant to targeted therapy efforts and first-line chemotherapy. In this study, we delineate that KRAS-mutant lung cancer cells resistant to pemetrexed (MTA) and anti-MEK drug trametinib acquire an exquisite dependency on endoplasmic reticulum (ER) stress signaling, rendering resistant cancer cells selectively susceptible to blockage of HSP90, the receptor tyrosine kinase AXL, the eukaryotic translation initiation factor 4E (eIF4E), and the unfolded protein response (UPR). Mechanistically, acquisition of drug resistance enables KRAS-mutant lung cancer cells to bypass canonical KRAS effectors but entail hyperactive AXL/eIF4E, increased protein turnover in the ER, and adaptive activation of an ER stress-relief UPR survival pathway whose integrity is maintained by HSP90. Notably, the unique dependency and sensitivity induced by drug resistance are applicable to KRAS-mutant lung cancer cells undergoing de novo intratumor heterogeneity. In line with these findings, HSP90 inhibitors synergistically enhance antitumor effects of MTA and trametinib, validating a rational combination strategy to treat KRAS-mutant lung cancer. Collectively, these results uncover collateral vulnerabilities co-occurring with drug resistance and tumor heterogeneity, informing novel therapeutic avenues for KRAS-mutant lung cancer

    A two-dimensional angular-resolved proton spectrometer

    Get PDF
    We present a novel design of two-dimensional (2D) angular-resolved spectrometer for full beam characterization of ultrashort intense laser driven proton sources. A rotated 2D pinhole array was employed, as selective entrance before a pair of parallel permanent magnets, to sample the full proton beam into discrete beamlets. The proton beamlets are subsequently dispersed without overlapping onto a planar detector. Representative experimental result of protons generated from femtosecond intense laser interaction with thin foil target is presented

    Metabolic synthetic lethality by targeting NOP56 and mTOR in KRAS-mutant lung cancer.

    Get PDF
    BACKGROUND Oncogenic KRAS mutations are prevalent in human cancers, but effective treatment of KRAS-mutant malignancies remains a major challenge in the clinic. Increasing evidence suggests that aberrant metabolism plays a central role in KRAS-driven oncogenic transformation. The aim of this study is to identify selective metabolic dependency induced by mutant KRAS and to exploit it for the treatment of the disease. METHOD We performed an integrated analysis of RNAi- and CRISPR-based functional genomic datasets (n = 5) to identify novel genes selectively required for KRAS-mutant cancer. We further screened a customized library of chemical inhibitors for candidates that are synthetic lethal with NOP56 depletion. Functional studies were carried out by genetic knockdown using siRNAs and shRNAs, knockout using CRISPR/Cas9, and/or pharmacological inhibition, followed by cell viability and apoptotic assays. Protein expression was determined by Western blot. Metabolic ROS was measured by flow cytometry-based quantification. RESULTS We demonstrated that nucleolar protein 5A (NOP56), a core component of small nucleolar ribonucleoprotein complexes (snoRNPs) with an essential role in ribosome biogenesis, confers a metabolic dependency by regulating ROS homeostasis in KRAS-mutant lung cancer cells and that NOP56 depletion causes synthetic lethal susceptibility to inhibition of mTOR. Mechanistically, cancer cells with reduced NOP56 are subjected to higher levels of ROS and rely on mTOR signaling to balance oxidative stress and survive. We also discovered that IRE1α-mediated unfolded protein response (UPR) regulates this process by activating mTOR through p38 MAPK. Consequently, co-targeting of NOP56 and mTOR profoundly enhances KRAS-mutant tumor cell death in vitro and in vivo. CONCLUSIONS Our findings reveal a previously unrecognized mechanism in which NOP56 and mTOR cooperate to play a homeostatic role in the response to oxidative stress and suggest a new rationale for the treatment of KRAS-mutant cancers

    A Genome-Wide Analysis of StTGA Genes Reveals the Critical Role in Enhanced Bacterial Wilt Tolerance in Potato During Ralstonia solanacearum Infection

    Get PDF
    TGA is one of the members of TGACG sequence-specific binding protein family, which plays a crucial role in the regulated course of hormone synthesis as a stress-responsive transcription factor (TF). Little is known, however, about its implication in response to bacterial wilt disease in potato (Solanum tuberosum) caused by Ralstonia solanacearum. Here, we performed an in silico identification and analysis of the members of the TGA family based on the whole genome data of potato. In total, 42 StTGAs were predicted to be distributed on four chromosomes in potato genome. Phylogenetic analysis showed that the proteins of StTGAs could be divided into six sub-families. We found that many of these genes have more than one exon according to the conserved motif and gene structure analysis. The heat map inferred that StTGAs are generally expressed in different tissues which are at different stages of development. Genomic collinear analysis showed that there are homologous relationships among potato, tomato, pepper, Arabidopsis, and tobacco TGA genes. Cis-element in silico analysis predicted that there may be many cis-acting elements related to abiotic and biotic stress upstream of StTGA promoter including plant hormone response elements. A representative member StTGA39 was selected to investigate the potential function of the StTGA genes for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) assays indicated that the expression of the StTGAs was significantly induced by R. solanacearum infection and upregulated by exogenous salicylic acid (SA), abscisic acid (ABA), gibberellin 3 (GA3), and methyl jasmonate (MeJA). The results of yeast one-hybrid (Y1H) assay showed that StTGA39 regulates S. tuberosum BRI1-associated receptor kinase 1 (StBAK1) expression. Thus, our study provides a theoretical basis for further research of the molecular mechanism of the StTGA gene of potato tolerance to bacterial wilt

    Synergistic effects of FGFR1 and PLK1 inhibitors target a metabolic liability in KRAS-mutant cancer.

    Get PDF
    KRAS oncoprotein is commonly mutated in human cancer, but effective therapies specifically targeting KRAS-driven tumors remain elusive. Here, we show that combined treatment with fibroblast growth factor receptor 1 (FGFR1) and polo-like kinase 1 (PLK1) inhibitors evoke synergistic cytotoxicity in KRAS-mutant tumor models in vitro and in vivo. Pharmacological and genetic suppression of FGFR1 and PLK1 synergizes to enhance anti-proliferative effects and cell death in KRAS-mutant lung and pancreatic but not colon nor KRAS wild-type cancer cells. Mechanistically, co-targeting FGFR1 and PLK1 upregulates reactive oxygen species (ROS), leading to oxidative stress-activated c-Jun N-terminal kinase (JNK)/p38 pathway and E2F1-induced apoptosis. We further delineate that autophagy protects from PLK1/FGFR1 inhibitor cytotoxicity and that antagonizing the compensation mechanism by clinically approved chloroquine fully realizes the therapeutic potential of PLK1 and FGFR1 targeting therapy, producing potent and durable responses in KRAS-mutant patient-derived xenografts and a genetically engineered mouse model of Kras-induced lung adenocarcinoma. These results suggest a previously unappreciated role for FGFR1 and PLK1 in the surveillance of metabolic stress and demonstrate a synergistic drug combination for treating KRAS-mutant cancer

    MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis
    corecore