38 research outputs found

    Effects of different stocking densities on the CO2 fluxes at water-air interface and the respiration metabolism in sea cucumber Apostichopus japonicus (Selenka)

    Get PDF
    Recently, abundant research has been devoted to investigating the variations of CO2 concentration in the atmosphere. However, the information of CO2 fluxes at the water-air interface remains limited, especially those from the respiratory metabolism of aquatic organisms. In the present study, a comprehensive analysis was carried out to evaluate the effects of different stocking densities of sea cucumber (Apostichopus japonicus) on the CO2 fluxes at water-air interface, and to explore the relationships between CO2 fluxes and respiratory metabolism. A total of 60 sea cucumbers were randomly classified into 4 groups with different stocking densities, including 2, 5 and 8 ind./tank (namely D2, D5 and D8 groups). After 34-day feeding trial, individuals in D5 had superior growth performance rather than D2 and D8. The analysis of modified floating static chambers clearly showed that the mean CO2 flux at the water-air interface in D5 was significantly higher than D2 and D8. Meanwhile, energy budget analysis revealed that D5 had higher carbon and nitrogen utilization, excretion energy and metabolizable energy, suggesting relatively active respiration metabolism in moderate stocking density. The activities of pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (OGDH) in respiratory tree and body wall tissues provided additional evidence for the higher respiration metabolism rate of individuals at D5, which may be responsible for the higher CO2 fluxes at the water-air interface. Transcriptome analysis was performed to uncover the molecular mechanism of respiratory metabolism affected by different stocking densities. The differentially expressed genes in respiration trees and body walls were significantly enriched in peroxisome, fatty acid degradation, and oxidative phosphorylation pathways. It may explain the differences of respiration metabolism rates at different stocking densities. The present study preliminarily revealed the CO2 fluxes variation at the water-air interface from aquatic invertebrates, and provided the scientific basis for the efficient and low-carbon agricultural technologies of sea cucumber

    Neurexin and neuroligins jointly regulate synaptic degeneration at the Drosophila neuromuscular junction based on TEM studies

    Get PDF
    The Drosophila larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, primarily based on transmission electron microscopy (TEM) studies. When degeneration starts, the subsynaptic reticulum (SSR) swells, retracts and folds inward, and the residual SSR then degenerates into a disordered, thin or linear membrane. The axon terminal begins to degenerate from the central region, and the T-bar detaches from the presynaptic membrane with clustered synaptic vesicles to accelerate large-scale degeneration. There are two degeneration modes for clear synaptic vesicles. In the first mode, synaptic vesicles without actin filaments degenerate on the membrane with ultrafine spots and collapse and disperse to form an irregular profile with dark ultrafine particles. In the second mode, clear synaptic vesicles with actin filaments degenerate into dense synaptic vesicles, form irregular dark clumps without a membrane, and collapse and disperse to form an irregular profile with dark ultrafine particles. Last, all residual membranes in NMJ boutons degenerate into a linear shape, and all the residual elements in axon terminals degenerate and eventually form a cluster of dark ultrafine particles. Swelling and retraction of the SSR occurs prior to degradation of the axon terminal, which degenerates faster and with more intensity than the SSR. NMJ bouton degeneration occurs under normal physiological conditions but is accelerated in Drosophila neurexin (dnrx) dnrx273, Drosophila neuroligin (dnlg) dnlg1 and dnlg4 mutants and dnrx83;dnlg3 and dnlg2;dnlg3 double mutants, which suggests that both neurexin and neuroligins play a vital role in preventing synaptic degeneration

    Dual graph regularized latent low-rank representation for subspace clustering

    No full text
    Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework for learning the locality and similarity information within data. However, it is often the case that not only the high-dimensional data reside on a non-linear low-dimensional manifold in the ambient space, but also their features lie on a manifold in feature space. In this paper, we propose a dual graph regularized LRR model (DGLRR) by enforcing preservation of geometric information in both the ambient space and the feature space. The proposed method aims for simultaneously considering the geometric structures of the data manifold and the feature manifold. Furthermore, we extend the DGLRR model to include non-negative constraint, leading to a parts-based representation of data. Experiments are conducted on several image data sets to demonstrate that the proposed method outperforms the state-of-the-art approaches in image clustering

    The Effects of Different Carbon Sources on the Production Environment and Breeding Parameters of Litopenaeus vannamei

    No full text
    This study investigated the effect of different carbon sources on water quality, ammonia removal pathways, the bacterial community, and the production of Litopenaeus vannamei in outdoor culture tanks. Three systems were established: a clear water system (CW) and biofloc technology (BFT) systems with added molasses (M-BF) or poly (3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) (P-BF). The average pH, total alkalinity, total organic carbon, biofloc volume, chlorophyll a, nitrite, nitrate, total nitrogen, and nitrification rate were significantly different among the treatments. Microbial composition varied and different dominant taxa were identified in the treatments by linear discriminant analysis effect size. Redundancy analysis indicated that the water quality parameters affected the distribution of the microbial community. Moreover, the genus Leucothrix was closely related to the M-BF treatment. Chemoheterotrophy and aerobic chemoheterotrophy were the most abundant functions in all treatments. A comparison of functions using BugBase indicated that the relative abundance of several functions such as biofilm formation, stress tolerance and functions related to anaerobic processes increased in the M-BF treatment. The specific growth rate, growth rate, and survival rate of shrimp were significantly higher in the P-BF system than in the CW system and the feed conversion ratio in the BFT treatments was significantly lower than that in the CW system. Overall, adding carbon sources affected water quality, microbial community, and shrimp performance. The results show that PHBV is a good alternative to carbon sources

    Effects of different feeding rations on the CO2 fluxes at water-air interface and energy budget of sea cucumber Apostichopus japonicus (Selenka)

    No full text
    Feeding ration is one of the most important factors that directly affect growth and physiology progress of sea cucumber Apostichopus japonicus. In present study, a 32-day experiment was carried out to investigate the effects of feeding ration (1%, 3%, and 7% of total body weight, named F1, F3 and F7, respectively) on growth performance, carbon allocation, energy budget and CO2 fluxes at water-air interface. Results showed the maximum specific growth rate was observed at F3, while F7 showed negative growth. And F3 exhibited the highest enzyme activities associated with respiration in respiratory tree and body wall. Carbon intake, nitrogen intake and energy intake were significantly affected by feeding ration, while energy allocation between F1 and F3 on growth and excretion were no significant difference, suggesting that increased feeding ration slightly increased the digestive burden. Compared to F1, food conversion efficiency and fecal energy of F3 were reduced, while respiration metabolizable energy was increased. Mean CO2 flux at water-air interface of F3 was significantly higher than that of F1 at noon and dusk, and mean CO2 flux of F7 was significantly lowest than other groups at all sample times. Our results revealed that feeding rations influence CO2 fluxes at water-air interface by altering physiological status, carbon content, and energy allocation for respiration metabolizable of sea cucumber. Our study provides a theoretical basis for promoting the development of efficient low-carbon aquaculture technology for sea cucumber and sustainable development of the industry
    corecore