7 research outputs found

    Effect of Cooperation on Economic Growth of Both China and Japan

    Get PDF
    This paper tries to measure the effect of cooperation on economic growth of both China and Japan by setting up an econometric model. This measuring is based on the basic framework of cooperation economics (Huang shao-an,2000) . The structure of the paper is as follows: The first part introduces the basic idea and analytical methods of cooperation economics; the second part establishes an econometric model for measuring the effect of cooperation on economic growth of both China and Japan; The third part measures degree of cooperation between China and Japan from two dimensions which are political factor and bilateral trade between China and Japan, and lists all the macroeconomic data that the econometric model needs; The fourth part employs the econometric model and the macroeconomic data to calculate the effect of cooperation on economic growth of both China and Japan; the final part is a brief conclusion

    Utility of S100A12 as an Early Biomarker in Patients With ST-Segment Elevation Myocardial Infarction

    Get PDF
    Importance: S100A12 is a calcium binding protein which is involved in inflammation and progression of atherosclerosis. Objective: We sought to investigate the utility of S100A12 as a biomarker for the early diagnosis and prognostication of patients presenting with ST-segment elevation myocardial infarction (STEMI). Design, Setting, and Participants: S100A12 was measured in 1023 patients presenting to the emergency department with acute chest pain between June 2012 and November 2015. An independent cohort of 398 patients enrolled at 3 different hospitals served as a validation cohort. Main Outcomes and Measures: The primary clinical endpoint of interest was major adverse cardiac and cerebral events (MACCE) defined as a composite of all-cause death, MI, stroke, or hospitalization for heart failure. Results: A total of 438/1023 patients (42.8%) in the diagnosis cohort were adjudicated as STEMI, among whom plasma S100A12 levels increased within 30 min and peaked 1–2 h after symptom onset. Compared with high-sensitivity cardiac troponin T and creatine kinase-MB isoenzyme, S100A12 more accurately identified STEMI, especially within the first 2 h after symptom onset (area under the curve 0.963 compared with 0.860 for hscTnT and 0.711 for CK-MB, both P \u3c 0.05). These results were consistent in the 243-patient validation cohort. The 1-year rate of MACCE was greatest in patients in the highest peak S100A12 tertile, intermediate in the middle tertile and least in the lowest tertile (9.3 vs. 5.7 vs. 3.0% respectively, Ptrend = 0.0006). By multivariable analysis the peak plasma concentration of S100A12 was an independent predictor of MACCE within 1 year after STEMI (HR, 1.001, 95%CI, 1.000–1.002; P = 0.0104). Zhang et al. S100A12 as a STEMI Biomarker Conclusions and Relevance: S100A12 rapidly identified patients with STEMI, more accurately than other cardiac biomarkers, especially within the first 2 h after symptom onset. The peak plasma S100A12 level was a strong predictor of 1-year prognosis after STEMI

    Effect of Cooperation on Economic Growth of Both China and Japan

    No full text

    Effect of Catalyst Inlet Flow Field Distribution Characteristics on Outlet NO Concentration Distribution in SCR Denitration Reactor Based on Monte Carlo Method

    No full text
    Selective catalytic reduction (SCR) technology plays a crucial role in flue gas denitration. The nonuniform distribution of catalyst inlet parameters causes the nonuniform distribution of NO concentration at the outlet, thus affecting accuracy of ammonia injection. Regarding this issue, this paper describes the impacts of nonuniform velocity and temperature on both the confidence of NO concentration measured at a single measuring point at the outlet and the denitration efficiency, which can provide a basis for structural optimization of SCR denitration reactor and decrease in ammonia slip. The random distribution form of velocity and temperature above the catalyst layer are derived from the actual gas volume and the actual SCR reactor model, and then the catalyst inlet boundary conditions were generated with different relative standard deviation of velocity and temperature accordingly. The confidence of outlet NO concentration measurement results can be counted by means of Monte Carlo simulation. Finally, the relation model can be obtained to calculate the confidence of outlet NO concentration measurement results at different working conditions. The results show that within the gas volume range of this work, in order to ensure the confidence of the NO concentration measurement results, the relative standard deviation of temperature before the catalyst inlet must be within 0.005 and the relative standard deviation of velocity before the catalyst inlet must be within 0.1. With the increase in relative standard difference in temperature, there is a slight decrease in the efficiency of denitration. With the different mean value of temperature, the variation range of denitration efficiency is similar to that of temperature-relative standard difference. With the different mean value of velocity, the deviation range of corresponding efficiency is similar to that of the temperature-relative standard difference. When the relative standard difference in velocity increases, the denitration efficiency decreases slightly. The greater velocity value, the decreasing range of denitration efficiency is larger than the variation range of relative standard difference in velocity

    “Dual sensitive supramolecular curcumin nanoparticles” in “advanced yeast particles” mediate macrophage reprogramming, ROS scavenging and inflammation resolution for ulcerative colitis treatment

    No full text
    Abstract Ulcerative colitis (UC) faces some barriers in oral therapy, such as how to safely deliver drugs to the colon and accumulate in the colon lesions. Hence, we report an advanced yeast particles system loaded with supramolecular nanoparticles with ROS scavenger (curcumin) to treat UC by reducing oxidative stress state and inflammatory response and accelerating the reprogramming of macrophages. In this study, the dual-sensitive materials are bonded on β-cyclodextrin (β-CD), the D-mannose (Man) is modified to adamantane (ADA), and then loaded with curcumin (CUR), to form a functional supramolecular nano-delivery system (Man-CUR NPs) through the host-guest interaction. To improve gastrointestinal stability and colonic accumulation of Man-CUR NPs, yeast cell wall microparticles (YPs) encapsulated Man-CUR NPs to form Man-CUR NYPs via electrostatic adsorption and vacuum extrusion technologies. As expected, the YPs showed the strong stability in complex gastrointestinal environment. In addition, the Man modified supramolecular nanoparticles demonstrated excellent targeting ability to macrophages in the in vitro cellular uptake study and the pH/ROS sensitive effect of Man-CUR NPs was confirmed by the pH/ROS-dual stimulation evaluation. They also enhanced lipopolysaccharide (LPS)-induced inflammatory model in macrophages through downregulation of pro-inflammatory factors, upregulation of anti-inflammatory factors, M2 macrophage polarization, and scavenging the excess ROS. Notably, in DSS-induced mice colitis model, Man-CUR NYPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways, alleviate oxidative stress by Nrf2/HO-1 signaling pathway, promote macrophages reprogramming and improve the favorable recovery of the damaged colonic tissue. Taken together, this study not only provides strategy for “supramolecular curcumin nanoparticles with pH/ROS sensitive and multistage therapeutic effects” in “advanced yeast particles”, but also provided strong theoretical support multi-effect therapy for UC

    Additional file 1 of Thermosensitive hydrogel with emodin-loaded triple-targeted nanoparticles for a rectal drug delivery system in the treatment of chronic non-bacterial prostatitis

    No full text
    Additional file 1: Fig. S1 A homemade heavy load device for measuring the mechanical strength of Gel. Fig. S2 Characterizations of the dialysis solution of the Gel. (A) Size of the upper layer of the clear liquid of the Gel. (B) TEM of the upper layer of the clear liquid of the Gel. Fig. S3 Frozen sections of heart, liver, spleen, lung, kidney tissues after drug administration. Green, C6; blue, DAPI (Nucleus). (n = 6). Fig. S4 Ratio of EMO/Gel in rectum of CNP rats at different time points. Data are represented as the mean ± SD (n = 6). *p < 0.05; **p < 0.01. Fig. S5 Pathological scoring. (A)The score of prostatic inflammations among the eight formulations. (B) Percentage of area (%) of collagen fibers among the eight formulations. Data are represented as the mean ± SEM (n = 6). *p < 0.05; **p < 0.01. Fig. S6 H&E staining of the heart, liver, spleen, lung, and kidney from various groups
    corecore