77 research outputs found

    Commuting Pattern with Park-and-Ride Option for Heterogeneous Commuters

    Get PDF
    We study the effect of the parking on heterogeneous commuters' travel choice in a competitive transportation system which consists of a subway and a parallel road with a bottleneck of limited service capacity. Every morning, commuters either use their private cars only or drive their cars to the bottleneck, park there, and then take the subway to the destination. Considering the effects caused by body congestion in carriage and the parking fees, we developed a bottleneck model to describe the commuters' travel choice. There exist several types of equilibrium that corresponds to user equilibrium. We investigated the influence of the capacity of the bottleneck and the total travel demand on the travel behaviors and on the total social cost. It is shown that there exists a scheme with suitable subway fare and parking fees to implement the minimum total social cost

    Regulatory Effect of Polysaccharides from Antrodia cinnamomea in Submerged Fermentation on Gut Microbiota in Mice with Antibiotic-Associated Diarrhea

    Get PDF
    In order to study the effect of polysaccharides produced by Antrodia cinnamomea in submerged fermentation on the intestinal flora of mice and, more broadly, to develop the potential and application value of A. cinnamomea in the field of functional food, we extracted and characterized intracellular polysaccharides (AIPS) and exopolysaccharides (AEPS) from the submerged cultured mycelia and broth of Antrodia cinnamomea. It was found that AIPS and AEPS were predominantly composed of glucose, galactose and mannose. Their average molecular masses were 3.52 × 106 and 4.16 × 105 Da, respectively. AEPS contained a pyran ring, while AIPS had (–C≡C–H) and (C–O) functional groups. Both AIPS and AEPS had strong digestive resistance as demonstrated by their resistance to α-amylase digestion and simulated gastric digestion. Intragastrically administered AIPS and AEPS significantly increased the relative abundance of some beneficial microorganisms (such as Lactobacillus) in the intestine of mice with lincomycin-caused diarrhea, and significantly reduced the relative abundance of some harmful microorganisms (such as Enterococcus, Staphylococcus, Parasutterella and Shigella) (P < 0.05), AEPS being more significantly better than AIPS. This study can provide a new idea and basis for the development of new multifunctional prebiotics

    Integrated calibration of a 3D attitude sensor in large-scale metrology

    Get PDF
    A novel calibration method is presented for a sensor fusion system in large-scale metrology, which improves the calibration efficiency and reliability. The attitude sensor is composed of a pinhole prism, a converging lens, an area-array camera and a biaxial inclinometer. A mathematical model is established to determine its three-dimensional attitude relative to a cooperative total station by using two vector observations from the imaging system and the inclinometer. The measurement model developed has two aspects to be calibrated: the intrinsic parameters of the imaging model; and the transformation matrix between the camera and the inclinometer. An integrated calibration method using a three-axis rotary table and a total station is then proposed. A single mounting position of the attitude sensor on the rotary table is sufficient to solve for all parameters of the measurement model. A correction technique for the reference laser beam of the total station removes the need for accurate positioning of the sensor on the rotary table. Calibration measurements are made at multiple angular positions of the rotary table in order to determine all the unknown parameters in the model. Experimental verification has verified the practicality and accuracy of this calibration method. Results show that the mean deviations of attitude angles using the proposed method are less than 0.01°

    Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs.

    Get PDF
    The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice

    Non-invasive Amide Proton Transfer Imaging and ZOOM Diffusion-Weighted Imaging in Differentiating Benign and Malignant Thyroid Micronodules

    Get PDF
    Background: Pre-operative non-invasive differentiation of benign and malignant thyroid nodules is difficult for doctors. This study aims to determine whether amide proton transfer (APT) imaging and zonally oblique multi-slice (ZOOM) diffusion-weighted imaging (DWI) can provide increased accuracy in differentiating benign and malignant thyroid nodules.Methods: This retrospective study was approved by the institutional review board and included 60 thyroid nodules in 50 patients. All of the nodules were classified as malignant (n = 21) or benign (n = 39) based on pathology. It was meaningful to analyze the APT and apparent diffusion coefficient (ADC) values of the two groups by independent t-test to identify the benign and malignant thyroid nodules. The relationship between APT and ZOOM DWI was explored through Pearson correlation analysis. The diagnostic efficacy of APT and ZOOM DWI in determining if thyroid nodules were benign or malignant was compared using receiver operating characteristic (ROC) curve analysis.Results: The mean APTw value of the benign nodules was 2.99 ± 0.79, while that of the malignant nodules was 2.14 ± 0.73. Additionally, there was a significant difference in the APTw values of the two groups (P &lt; 0.05). The mean ADC value of the benign nodules was 1.84 ± 0.41, and was significantly different from that of the malignant nodules, which was 1.21 ± 0.19 (P &lt; 0.05). Scatter point and Pearson test showed a moderate positive correlation between the APT and ADC values (P &lt; 0.05). The ROC curve showed that the area under the curve (AUC) value of ZOOM DWI (AUC = 0.937) was greater than that of APT (AUC = 0.783) (P = 0.028).Conclusion: APT and ZOOM DWI imaging improved the accuracy of distinguishing between benign and malignant thyroid nodules. ZOOM DWI is superior to APTw imaging (Z = 2.198, P &lt; 0.05)

    Commuting Pattern with Park-and-Ride Option for Heterogeneous Commuters

    Get PDF
    We study the effect of the parking on heterogeneous commuters' travel choice in a competitive transportation system which consists of a subway and a parallel road with a bottleneck of limited service capacity. Every morning, commuters either use their private cars only or drive their cars to the bottleneck, park there, and then take the subway to the destination. Considering the effects caused by body congestion in carriage and the parking fees, we developed a bottleneck model to describe the commuters' travel choice. There exist several types of equilibrium that corresponds to user equilibrium. We investigated the influence of the capacity of the bottleneck and the total travel demand on the travel behaviors and on the total social cost. It is shown that there exists a scheme with suitable subway fare and parking fees to implement the minimum total social cost

    Meteorological Influences on Spatiotemporal Variation of PM2.5 Concentrations in Atmospheric Pollution Transmission Channel Cities of the Beijing&ndash;Tianjin&ndash;Hebei Region, China

    No full text
    Understanding the spatiotemporal characteristics of PM2.5 concentrations and identifying their associated meteorological factors can provide useful insight for implementing air pollution interventions. In this study, we used daily air quality monitoring data for 28 air pollution transmission channel cities in the Beijing&ndash;Tianjin&ndash;Hebei region during 2014&ndash;2019 to quantify the relative contributions of meteorological factors on spatiotemporal variation in PM2.5 concentration by combining time series and spatial perspectives. The results show that annual mean PM2.5 concentration significantly decreased in 24 of the channel cities from 2014 to 2019, but they all still exceeded the Grade II Chinese Ambient Air Quality Standards (35 &mu;g m&minus;3) in 2019. PM2.5 concentrations exhibited clear spatial agglomeration in the most polluted season, and their spatial pattern changed slightly over time. Meteorological variables accounted for 31.96% of the temporal variation in PM2.5 concentration among the 28 cities during the study period, with minimum temperature and average relative humidity as the most critical factors. Spatially, atmospheric pressure and maximum temperature played a key role in the distribution of PM2.5 concentration in spring and summer, whereas the effect of sunshine hours increased greatly in autumn and winter. These findings highlight the importance of future clean air policy making, but also provide a theoretical support for precise forecasting and prevention of PM2.5 pollution

    Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China

    No full text
    In recent decades, with the increase in extreme climate duration and the continuous development of urbanization in China, the threat of landslide disasters has become increasingly serious. More and more scholars pay attention to the problem of the prevention of landslide disasters. Therefore, the landslide susceptibility prediction is generated, which can play an important role in the design of land development and urban development schemes in mountainous areas. In this paper, the frequency ratio (FR) model is used to quantitatively analyze the relationship between each factor and the occurrence of landslide (elevation, slope, aspect, plan curvature, profile curvature, distance to faults, rainfall, distance to rivers, soil types, land cover, Normalized Difference Vegetation Index (NDVI) and distance to roads). Based on the analysis of landslide distribution, 12 influencing factors were selected to establish the landslide susceptibility evaluation index system. Historical landslide points were randomly divided into training (70% of the total) and validation (30%) sets. Thereafter, decision tree (DT), logistic regression (LR), and random forest (RF) models were used to generate the landslide susceptibility mapping (LSM), and the predictive performance of the three models was evaluated using receiver operating characteristic (ROC) curves. The FR model results showed that landslides mostly occurred at slopes of 0–15°, elevations of <1000 m, distance to rivers of 0–500 m, rainfall of 750–840 mm, NDVI of 0.8–0.9, distance to roads of 0–500 m, distance to faults of 1500–2000 m and transportation land. Our results also showed that the RF model showed a great capability of identifying areas highly susceptible to landslide, and this model had the greatest reliability. High and very high landslide susceptibility was detected for 29.73% of the land area of Longnan City, Gansu Province, mainly in the eastern, northeastern, and southern regions. The importance ranking of the RF model also revealed that elevation, NDVI, distance to roads, and rainfall dominated the spatial distribution of landslides. Our results could help government agencies and decision-makers make wise decisions for future natural hazard prevention in Longnan City

    The Preparation and Modification of Hemodialysis Membrane materials and Hemodialyzer

    No full text
    Hemodialysis is the main treating technique for renal failure, and the clinical effect is dramatically affected by dialysis membranes. The present paper introduced the mechanism of hemodialysis,the classification and development of membranes. Meanwhile, the hemocompatibility and modification of membranes,including anticoagulation, oxidative stress,complement activation, were discussed in detail. Besides, the configuration and history of hemodialyzer were also illustrated
    • …
    corecore