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Abstract 

A novel calibration method is presented for a sensor fusion system in large-scale 

metrology, which improves the calibration efficiency and reliability. The attitude sensor 

is composed of a pinhole prism, a converging lens, an area-array camera and a biaxial 

inclinometer. A mathematical model is established to determine its three-dimensional 

attitude relative to a cooperative total station by using two vector observations from the 

imaging system and the inclinometer. The measurement model developed has two 

aspects to be calibrated: the intrinsic parameters of the imaging model; and the 

transformation matrix between the camera and the inclinometer. An integrated 

calibration method using a three-axis rotary table and a total station is then proposed. A 

single mounting position of the attitude sensor on the rotary table is sufficient to solve 

for all parameters of the measurement model. A correction technique for the reference 

laser beam of the total station removes the need for accurate positioning of the sensor 

on the rotary table. Calibration measurements are made at multiple angular positions of 

the rotary table in order to determine all the unknown parameters in the model. 

Experimental verification has verified the practicality and accuracy of this calibration 

method. Results show that the mean deviations of attitude angles using the proposed 

method are less than 0.01°. 

 

Keywords: sensor calibration; attitude measurement; large-scale metrology; large-

volume metrology; sensor fusion system 

 

1 Introduction 
The problem of accurate attitude (orientation) measurement for rigid body objects 

is important in large-scale equipment manufacturing and the engineering of several 

domains including aircraft and spacecraft, ships, tunnel boring machines, and cranes 

[1-4]. Field measurement applications commonly require a sensor to have long range, 

high accuracy, be robust in harsh environments and be portable in use. For example, the 

underground guidance of tunnel boring machines requires measurement of real-time 

pose to within 10 mm and 1 mrad (about 0.057°) at a range of more than 100 m. 

Several technologies and approaches are available to realize multi-dimensional 



 

 

attitude measurement. One popular approach is based on using inertial sensors 

composed of multiple gyros and accelerometers [5]. The inertial based approach obtains 

positions and attitudes by calculating integrals of angular velocities and accelerations 

from the gyros and accelerometers, and is independent of external influences. However, 

its measurement errors tend to grow unbounded over time, and high-accuracy inertial 

units are very costly. Some sensor fusion techniques use aiding sensors, such as Global 

Navigation Satellite System (GNSS) or an electronic compass to help the inertial 

sensors mitigate the drift errors [6-8]. However, neither of them have a stable attitude 

accuracy better than 0.1°, besides, GNSS is not appropriate for use in indoor and 

underground environments, and electronic compasses may be influenced by local 

magnetic fields. Another existing method is to use optical or vision based observations 

of targets located on an object [9-11]. A typical method of determining the camera 

posture in computer vision is solving the so-called perspective-n-point (PnP) problems 

with multiple feature points. However, using a purely vision based method it is difficult 

to ensure good accuracy at more than 10 m of measurement range, and the fact that 

angular uncertainty increases with measurement range requires large target spaces for 

high accuracy and long range observations. 6-DOF probes based on laser trackers are 

commercially available. One such system, the Leica T-Mac uses a motorized camera on 

the tracker station to track the multiple points on the T-Mac probe [12]. It is a 

combination of laser tracking for position and PnP technique for orientation. Another 

such system, the API i360 probe combines a laser tracker with inclinometers and 

polarization of the laser to measure all the three attitude angles [13]. 

A number of patents describe a system in which a laser tracker is used to measure 

the position of a corner cube reflector with an aperture in the corner of the reflector. A 

portion of the beam passes onto a position detector located behind the aperture enabling 

pitch and yaw about the beam to be detected [REF’s]. The final degree of freedom, roll 

about the beam, may be detected by, for example, imaging markers located around the 

reflector [REF] or by the polarization plane of the laser beam [REF]. 

Although the laser tracker based method has high accuracy, it also has limited 

measurement range, is extremely costly and is not suitable for engineering applications 

in harsh environments. Furthermore, many combined measurement scenarios using 

cameras, laser sensors, structured lights and mechanical devices have been proposed 

[14-16]. These are deficient in either range or accuracy. 

Compared with the measurement systems described above, in large-scale 

metrology a total station instrument [17] is a popular tool in industrial and external 

engineering environments, offering advantages of flexibility in use, efficient 

measurement, long range (at least hundreds of meters), high accuracy (1-millimeter 

level), especially for angle measurement (1 arcsec level) and at reasonable cost ($2,000 

to $20,000). However, a total station is a 3D coordinate measurement instrument, and 

it generally achieves 3D coordinate measuring by cooperation with an ordinary cube-



 

 

corner prism. The total station instrument cannot survey orientation directly which 

makes its applications limited. In this case, an attitude sensor for total station [18] (TS-

attitude sensor) has been proposed. The TS-attitude sensor in [18] is composed mainly 

of a pinhole prism, a converging lens, an area-array camera and a biaxial inclinometer. 

By cooperating with this single sensor, which replaces the traditional prism, a total 

station can realize 3D attitude measurement with good accuracy. However, in [18], the 

calibration method for the attitude sensor uses two calibration setups in different steps, 

the whole process needs a large number of manual operations and adjustments, which 

may be unreliable, time-consuming and inefficient. 

In the open literature on related calibration methods for attitude sensors for inertial 

systems [5] and star trackers [19], the multi-position tests are the common methods by 

mounting the sensor unit on a precise multi-axis rotary table. Motivated by the 

aforementioned studies, this paper proposes a novel calibration method for TS-attitude 

sensor in [18] which uses a three-axis rotary table and a total station as calibration tools 

to provide reference standard. After fixing a TS-attitude sensor on the three-axis rotary 

table just once, all the unknown parameters in the measurement model can be calibrated 

by different steps of multi-position tests.  

The main contributions of this paper are as follows: 

1) Establishment of a precise measurement model for TS-attitude sensor. 

2) Proposal of a practical calibration method that enables different types of 

unknown parameters in the model to be calibrated in a single setup.  

3) Presentation of a technique that makes the calibration simpler, without 

considering complex installation of the sensor in the calibration platform. 

This paper is organized as follows. In Section 2, the configuration and the 

mathematical model of the attitude sensor are described. Section 3 introduces the 

integrated calibration method. Then, experimental validations are described in Section 

4. Finally, concluding remarks and a brief overview of further work are presented. 

 

2 Principle of Measurement 

2.1  System Composition and Working Principle 

The attitude measurement system this paper has two main units: a total station 

which acts as a base station; and a TS-attitude sensor which acts as a cooperative target. 

The function of the system is to determine the six degrees of freedom (including 3D 

position and 3D attitude) of the target sensor with respect to the stationary total station. 

The system prototype and composition are illustrated in Figure 1.  

The TS-attitude sensor is very small and portable, being housed in an aluminum 

casing. The only exposed surface is the reflecting surface of the prism. The pinhole 

prism is adapted from a Leica standard circular prism whose vertex is cut in a small 

part to form a light channel. A converging lens and an area-array camera are designed 

behind the pinhole prism inside the sensor. The converging lens focuses at infinity and 



 

 

its aperture diaphragm is at the pinhole of the prism. During measurement, the total 

station emits an approximately columnated measuring beam on the pinhole prism. Most 

of the light is reflected back by the prism which enables cooperative tracking as usual. 

The portion of light which passes through the pinhole is converged by the subsequent 

lens and finally produces a concentrated light spot on the imaging plane of the camera. 

The center of gravity method [20] is used to find a sub-pixel centroid of the spot. The 

location of the spot on the image plane gives the direction of the laser source and hence 

the orientation of the sensor in two degrees of freedom. The remaining degree of 

freedom, the rotation about the axis of the laser beam, is determined using a biaxial 

inclinometer located inside the sensor. Further, by the fusion of the detecting 

information from the imaging system and the inclinometer, the TS-attitude sensor 

finally obtains its 3D attitude in the coordinate system of the total station. 

 
Figure 1. Prototype and composition of the attitude measurement system. 

 

2.2  Measurement Model 

The measurement model involves the following conventions:  

 A single superscript to the left of a vector denotes its coordinate system, for 

example, a vector v
T , is in frame T.  

 The use of both a subscript and superscript denotes a transformation between two 

coordinate systems, for example, a rotation matrix R
T
C  means its transformation 

is from frame C to frame T.  

 A single subscript character following a matrix represents its state or sequence in a 

series of data. For example, a rotation matrix R i( )  means it is the i-th matrix in a 

series of matrixes (i=1, 2, …, n). 

In the attitude measurement system, three different coordinate systems are defined: 

the total station frame (OTXTYTZT-coordinate, frame T) as the reference coordinate 

system; the camera frame (OCXCYCZC-coordinate, frame C); and the inclinometer frame 

(OIXIYIZI-coordinate, frame I) in the sensor, as shown in Figure 2.  



 

 

 
Figure 2. Definitions of all frames and their relationships in the attitude measurement. 

 

A total station is a spherical coordinate measuring system, the origin OT is the 

starting point of the ranging measurement. Therefore the unit vector of the measuring 

beam, v
T  is obtained easily according to the measurement value of the total station. 

The ZT-axis is perpendicular with the horizontal plane and therefore the gravity vector 

in frame T is  
T

0 0 1T
g = . Since frame T is a left-handed coordinate system (inherent 

in the definition of a total station), all the coordinate systems in this paper are defined 

as left-handed systems. 

Unlike a traditional imaging system, which maps 3D points in the world coordinate 

system to 2D image points, the imaging system in the sensor instead maps the beam 

direction v
T . Taking all the components in the light path including the prism into 

account, the reflection center of the prism where each incident rays intersect is the real 

optical center. Therefore, in frame C, the reflection center of the prism is defined as the 

origin OC.  

This imaging system conforms to the pinhole model with lens distortion. As shown 

in the camera frame definition part of Figure 3, the unit vector v
C  denotes the vector 

of the laser beam in frame C, (u′, v′) denoting the real (distorted) image pixel 

coordinates, and (u, v) denoting ideal image pixel coordinates. According to the pinhole 

imaging model, the four-parameter model of a camera is given by 

x x

y y

u a u v x v z a u x

v a v v y v z a v y

        
        
        
                

C C

C C

0 0

0 0

0 ( ) ( ) 0

= 0 ( ) ( ) = 0

1 0 0 1 1 0 0 1 1

 (1) 

where (u0, v0) denote the image coordinates of the camera’s principal point, (x, y) are 

ideal normalized image coordinates, ax and ay are scale factors. Then, optical lens 

distortion is added to the ideal coordinates in order to obtain a precise model, and in 

this paper, only the first two terms of radial distortion are considered [21]. Let (x′, y′) 

be the real (distorted) normalized image coordinates. Now 

2 2 2 2 2

1 2

2 2 2 2 2

1 2

= + [ ( + ) + ( + )

= + [ ( + ) + ( + )

x x x k x y k x y

y y y k x y k x y

 



]

]
 (2) 

where k1 and k2 are the coefficients of the radial distortion. From = +
0 x

u u a x   and 

= +
0 y

v v a y  , it follows that 
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The imaging model has been established from laser beam vectors to the 

corresponding centroid of the spots. Also, as an inverse, the laser beam vector v
C  can 

also be obtained from the corresponding centroid of the real spot (u′, v′) according to 

equation (3) ~ (1) with all the camera parameters calibrated. 

The geometrical measurement model of a biaxial inclinometer is also shown in 

Figure 2. Observed data (η, μ) indicate the inclined angles between XI-axis, YI-axis of 

the inclinometer and the horizontal plane. At this time, the unit vector of gravity 

direction in frame I is calculated by  

T
2 2= sin sin 1-sin -sinI η μ η μ 

  
g  (4) 

Now that the measurement model in each coordinate system has been described, 

the orientation transformation among them is defined. Suppose the attitude matrix from 

frame I to frame C is C

I
R , and that from frame C to frame T is T

C
R , which is the final 

goal. Since the gravity vector in frame C is obtained from that in frame I:  

=C Ig R g
C

I  (5) 

then  

=

=T C

 




T T C

C

T

C

v R v

g R g
 (6) 

Thus, the calculation of the attitude between the total station and the sensor has 

become a problem of attitude determination using two vector observations: the laser 

beam vector and the gravity vector. According to Wahba’s study [22], this problem is 

described as finding the proper orthogonal matrix T

C
R  that minimizes the least-squares 

loss function 

1 2
= ) + T Cp p     

T T T C T

C C C
L R v R v g R g

1
( ) ( ( )

2
 (7) 

where p1 and p2 are weighting coefficients of each observation vectors. Their values are 

determined based on the angle measuring uncertainties of the imaging system and the 

inclinometer, respectively. This problem can be solved by the SVD (singular value 

decomposition) method that is presented by Markley in [23]. Define the matrix 

1 2
= + T Cp pT CB v v g gT T  (8) 

Then T

C
R  is solved by the SVD method: 

= 1 1 (det )(det )  
T

C
R U U V VT  (9) 

where V and U are right and left singular matrices of B. The detailed derivation process 



 

 

is explained in reference [23]. 

3 Integrated Calibration Method 

3.1  Calibration Setups 

In the measurement model of the system, there are two aspects should be calibrated 

in order to achieve measurement: the unknown intrinsic parameters ( )
x y 0 0 1 2

a , a , u , v , k , k  

of the imaging model, and the transformation matrix C

I
R  between the coordinate 

systems of the camera and the inclinometer. Therefore, the calibration includes two 

steps and finally they are integrated together.  

The calibration setup is shown in Figure 3(a). The three-axis rotary table used has 

four main components: the fixed base; the external frame which rotates around the 

horizontal-rotation axis with respect to the fixed base; the middle frame which rotates 

around the vertical-rotation axis with respect to the external frame; and the internal 

frame which rotates around the roll-rotation axis with respect to the middle frame. 

Notice that the rotary table used is levelled, which means that the horizontal-rotation 

axis is the same as the gravity direction. The TS-attitude sensor is mounted on the 

internal frame of the rotary table with the prism pointing towards the stationary total 

station, and the measurement laser beam of the total station is locked to the prism. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

 

Figure 3. Calibration setup and rotation definition of the three-axis rotary table: (a) Calibration 

setup description; (b) Horizontal rotation of the rotary table; (c) Vertical rotation of the rotary table; (d) 

Roll rotation of the rotary table. 

 

A rotary table coordinate frame (ORXRYRZR-coordinate, frame R) is defined on the 

internal frame, its origin is on the rotary center, and in the default position, the ZR-axis, 

YR-axis and XR-axis are the same as the horizontal-rotation, vertical-rotation and roll-

rotation axes. At this position, the default rotation is at horizontal angle α = 0°, vertical 

angle β = 0°, and roll angle γ = 0°. The rotating sketch of all the three axes are plotted 

in Figures 3(b), (c), and (d). 

In a situation where the internal frame and the sensor is rotated by horizontal angle 

α(i) (i = 0, 1, 2, …, l), vertical angle β(j) (j = 0, 1, 2, …, m) and roll angle γ(k) (k = 0, 2, …, 

n), the relative attitude of frame R with respect to the fixed base has changed, and this 

attitude transformation can be expressed by the rotation matrix 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )

cos 0 -sin cos sin 01 0 0

= 0 cos sin 0 1 0 -sin cos 0

sin 0 cos0 -sin cos 0 0 1

j j i i

R

k k i i

j jk k

β β α α

γ γ α α

β βγ γ

     
     
     
     

    

i j k
R

( , , )  (10) 

Note that by definition, α(0) = 0°, β(0) = 0° and γ(0) = 0°. The specific calibration 

process is described in the following subsections. 

3.2  Calibration of the Imaging Model 

An external frame rotates around the horizontal-rotation axis of the rotary table, 

and the middle frame rotates around the vertical-rotation axis to calibrate the imaging 

model. By changing multiple angular positions of these two frames, for the sensor on 

the rotary table in front of the reference laser beam from the total station an accurate 

control field of the laser beam can be constructed.  

The reflection center of the prism should be adjusted relative to the rotary center 

of the rotary table in order to make sure that during rotation, the laser beam vector from 

the total station to the prism remains stationary. However, in order to avoid the rotary 

table blocking the light path, the TS-attitude sensor has to be mounted offset from the 

rotary center and above the XRYR -plane. As a result, the reflection center of the sensor 

varies in both vertical and horizontal directions relative to the fixed base during the 

rotating around all the axes, as shown in Figure 4. 

 

(a) 

 

(b) 



 

 

Figure 4. Relationship between the laser beam and the sensor in the calibration process: (a) Angle 

deviation in vertical direction; (b) Angle deviation in horizontal direction. 

 

Since the sensor is tracked by the total station continuously in the lock mode, by 

reading the deviation values of the horizontal and vertical angles from the total station, 

the reference laser beam can be corrected. Actually, because of the utilization of the 

total station, the demand of the sensor installation on the rotary table is not essential. In 

the setup of the calibration, the height of the total station is adjusted to ensure that the 

measurement beam is leveled in the default position of the rotary table. In this situation, 

the laser beam vector in frame R can be expressed as follows:  

0

cos( + ) cos( + )

= sin( + ) cos( + )

sin( + )

R

φ δφ ψ δψ

φ δφ ψ δψ

ψ δψ

 
 
 
 
 

v  (11) 

where (φ, ψ) are yaw and pitch angles, respectively, which are illustrated in Figure 4(a), 

and (δφ, δψ) are the corresponding deviation angles. The value of φ is unknown, and 

since the rotary table and total station are both levelled, ψ = 0°. The values of (δφ, δψ) 

are directly obtained by the total station as illustrated in Figure 4.  

During the camera calibration, no motion around the roll-rotation axis is 

maintained. In a position where the internal frame and the sensor are rotated by the 

horizontal angle α(i) (i-th position) and vertical angle β(j) (j-th position), the relative 

attitude of frame R with respect to the fixed base or its default position has changed, 

and the laser beam vector in frame R has been transformed as  

0

R R R

i, j i, j, 
 v R v

( ) ( 0)
 (12) 

where the definition of R

i, j, 
R

( 0)
 is the same as equation (10). 

Suppose the rotation matrix from frame R to frame C is T

C
R , then the laser beam 

vector in frame C is expressed as  

cos( + ) cos( )

sin( + ) cos( )

sin( )

C C R C R

i, j R i, j R i, j

φ δφ δψ

φ δφ δψ

δψ

 
 

      
 
 

v R v R R
( ) ( ) ( , 0)

 (13) 

Equation (13) establishes the exact relationship between the laser beam vector and 

the camera coordinate system via the two-dimensional rotary transformation of the 

rotary table. Equation (13) represents an extrinsic parameter model in which the 

parameters. Further, suppose ( , )u v 
i j i j( , ) ( , )  in the image plane is the projection of beam 

vector v
C

i j( , )
 according to equations (3) ~ (1) of the intrinsic parameter model in 

Section 2.2, then the whole measurement model of the imaging system is established. 

For l × m different rotation positions of the rotary table during calibration, the 

image position of detected laser spot is given by ( , )u v
i j i j( , ) ( , )

ˆ ˆ  where the external frame 

is in i-th position and the middle frame is in j-th position. All the unknowns 



 

 

0 0 1 2
( , , )C

R x y
φ a , a , u , v , k , kR  in this model can be obtained by minimizing the following 

function:  

2 2

0 0 1 2
=1 =1

( , , ) = [( - ) + ( - ) ]
m l

C

R x y
j i

φ a , a , u , v , k , k u u v v R
i j i j i j i j

J
( , ) ( , ) ( , ) ( , )
ˆ ˆ  (14) 

This nonlinear minimization problem can be solved using optimization techniques 

such as the Levenberg–Marquardt algorithm [24]. Note that reasonable initial values 

should be given for a global optimal solution. 

3.3  Calibration Between the Inclinometer and the Rotary Table 

Since the rotation matrix between coordinate systems of the camera and rotary 

table has been calibrated, by calibrating the transformation between the inclinometer 

and the rotary table, the final rotation C

I
R  can be obtained. A practical and high-

precision method is presented by changing multiple angular positions of the rotary 

table’s middle frame and internal frame. Because the rotary table is levelled, in the 

default position the unit vector of the gravity direction in frame R is  
T

0 0 1T
g = . 

During calibration, no motion is maintained around the horizontal-rotation axis 

and in a position where the internal frame and the sensor are rotated by vertical angle 

β(j) (j-th position) and roll angle γ(k) (k-th position). The relative attitude of frame R with 

respect to the fixed base or its default position changes, hence the gravity vector in 

frame R is transformed as  

0

R R R

j, k j, k
 g R g

( ) (0, )
 (15) 

where the definition of R

j, k
R

(0, )
 is the same as equation (10). Substituting for R

j, k
R

(0, )
 

by (10) in (15), simplifying and results in  
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R
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g
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Since the rotation matrix from frame R to frame I is I

R
R , the gravity vector in 

frame I can be calculated from that in frame R as  

( )

( ) ( )

( ) ( )

-sin

sin cos

cos cos

j

I I R I

R R k j

k j

β

γ β

γ β

 
 

     
 
 

g R g R
j k j k( , ) ( , )

 (17) 

Since the gravity vector in frame I is measured directly according to equation (4), 

substituting for I

j, k
g

( )
 from (4), equation (17) is transformed as  
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where the observed ( )
j, k j, k

η μ
( ) ( )

,  indicate the inclined angles from the inclinometer in a 

position of the rotary table where the vertical-rotation angle is β(j) and roll-rotation angle 

is γ(k). By stacking m × n such equations as (18) together,  

(1) ( )

(1) (1) ( ) ( )

2 2 2 2
(1) (1) ( ) ( )

sin sin-sin -sin

sin cos sin cos sin sin

cos cos cos cos 1- sin - sin 1- sin - sin

m

I

R n m

n m

η ηβ β

γ β γ β μ μ

γ β γ β η μ η μ

  
  
   
  
    

R

m n

m n

m n m n

(1, 1) ( , )

(1, 1) ( , )

(1, 1) (1, 1) ( , ) ( , )

 (19) 

Equation (19) can be simplified to a matrix equation in form of I

R
RA D , and I

R
R  

may be solved by in terms of the SVD: 

T=I

R
R VU  (20) 

where V and U are right and left singular matrices of ADT.  

3.4  Calibration Summary 

According to the result of Subsections 3.2 and 3.3, the final rotation between the 

coordinate systems of the inclinometer and the camera is obtained as  

TC C I

I R R
 R R R  (21) 

and to summarize, the basic block diagram of the whole calibration process is shown in 

Figure 5. 

 
Figure 5. Block diagram of calibration implementation. 

 

4 Experiments 
The camera used in the TS-attitude sensor had 1280 × 1024 pixels each of 5.3 μm 

× 5.3 μm in size. The converging lens designed had a 12 mm focal length, which 

determines the field of view to be approximately 33° × 27°. The inclinometer in the 

sensor had a measurement range of ±15° in both axes, and its measurement maximum 



 

 

permissible error (MPE) was 0.005°. After the camera and the inclinometer were 

installed in the sensor, XI-axis was nearly parallel to the ZC-axis, and YI-axis was nearly 

parallel to the XC-axis due to the precision of the machining. The three-axis rotary table 

used had an angle measurement accuracy of 1 arcsec. A Leica TS15 total station with 

angle measurement uncertainty of 1 arcsec was used for these experiments. The 

calibration platform is shown in Figure 6.  

 
Figure 6. Experimental and verification platform for the proposed method. 

 

In the ideal case, the values of the intrinsic parameters of the imaging model are 

as listed in Table 1: the scale factor is the quotient of the designed focal length divided 

by the pixel size, the principal point values are the half of the pixel numbers, and all 

distortion coefficients are set to zero. The value of rotation matrix C

I
R  in the ideal 

situation is also listed in Table 1, which was calculated according to the installation 

relationship between the camera and the inclinometer.  

Table 1. Ideal values and calibrated results of the unknown parameters in the model. 

 ax ay u0 v0 k1 k2 
C

I
R  

Ideal value 2264.15 2264.15 640 512 0 0 

0 1 0

0 0 1

1 0 0

 
 
 
  

 



 

 

Calibrated 

result 
2269.28 2269.53 628.28 509.80 0.045 -0.007 

-0.0135 0.9999 0.0053

0.0036 -0.0052 0.9999

0.9999 0.0135 -0.0035

 
 
 
  

 

 

During the calibration of imaging model, the horizontal-rotation axis was rotated 

from -15° to 15°, and vertical-rotation axis from -12° to 12°, respectively, both with a 

2° step, which results in 16 × 13 = 208 groups of calibration data. During the calibration 

for I

R
R , the vertical-rotation axis and roll-rotation axis were both rotated from -10° to 

10° with a 5° step, which results in 5 × 5 = 25 groups of calibration data. By control of 

an automated program, the whole calibration process was completed in less than 30 

minutes without human intervention.  

The calibration results are also listed in Table 1, and they are evidently different 

with the ideal values. In addition, the RMS residual distance error of the laser spot 

center is 0.23 pixel, which corresponds to equivalent RMS angle error of 0.0059° 

according to the imaging model. Also, the RMS residual error of the inclinometer 

calibration is 0.0025°. These results verify the feasibility and effectiveness of the 

calibration approach.  

The final performance of the TS-attitude sensor was also evaluated using the rotary 

table as an angle standard. In order for a direct comparison, the attitude matrix of the 

sensor was parameterized by three Euler angles: yaw, pitch, and roll, corresponding to 

the horizontal-rotation, vertical-rotation and roll-rotation angles of the rotary table. The 

attitude measurement system was inspected at 27 different random positions of the 

rotary table with the proposed method, and measurement values were compared with 

the ground reference obtained directly from the rotary table. In addition, the experiment 

data were also processed by the model with uncalibrated parameters which were set by 

ideal values. The results of the 3D angle deviation are plotted in Figure 7, showing that 

by using the proposed method the mean deviation of these 27 sets of result is (0.0066°, 

0.0018°, 0.0023°). As a comparison, Figure 8 shows the mean deviation processed by 

the model without calibration as (0.0193°, 0.0119°, 0.0163°). Figure 7 shows that the 

variability in the yaw angle measurement is larger than that of pitch and roll angles, this 

is because the yaw angle is almost completely determined by the imaging system whose 

measurement accuracy is lower than that of the inclinometer. This phenomenon is not 

clear in Figure 8 because the effect of uncalibrated parameters is much larger than the 

random effects in the measuring units. 



 

 

 
Figure 7. The 3D angle deviations in verification experiment using proposed method. 

 

 
Figure 8. The 3D angle deviations in verification experiment using uncalibrated parameters. 

 

5 Conclusions  
This paper has proposed a novel calibration method for an accurate 3D attitude 

sensor to improve the calibration efficiency and reliability. The configuration and 

measurement principle of the sensor have been introduced, and a mathematical model 

has also been developed to obtain the 3D attitude of the sensor with respect to the 

cooperative total station. The new calibration method enables all the unknown 

parameters in the measurement model (the intrinsic parameters of the imaging model. 

It also enables the transformation matrix between the camera and the inclinometer) to 

be calibrated with a single placement on the three-axis rotary table without considering 

accurate location of the installed sensor. Therefore, the method is very significant for 

engineering applications.  

In the practical experiment, by the control of an automated program, the whole 

calibration process has been completed in less than 30 minutes without human 

intervention. For validation, the performance of the calibrated sensor system has 

compared with that without calibration. The evaluation experiments have shown that 

the mean deviation of yaw, pitch, and roll angles using the proposed method are 

(0.0066°, 0.0018°, 0.0023°) compared with (0.0193°, 0.0119°, 0.0163°) using 

uncalibrated parameters.  

The calibration method described here could be applied in other attitude 

measurement systems based on sensor fusion. Future work may benefit greatly by 



 

 

studying more complicated camera model.  
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