3,487 research outputs found

    Long-term Microscopic Traffic Simulation with History-Masked Multi-agent Imitation Learning

    Full text link
    A realistic long-term microscopic traffic simulator is necessary for understanding how microscopic changes affect traffic patterns at a larger scale. Traditional simulators that model human driving behavior with heuristic rules often fail to achieve accurate simulations due to real-world traffic complexity. To overcome this challenge, researchers have turned to neural networks, which are trained through imitation learning from human driver demonstrations. However, existing learning-based microscopic simulators often fail to generate stable long-term simulations due to the \textit{covariate shift} issue. To address this, we propose a history-masked multi-agent imitation learning method that removes all vehicles' historical trajectory information and applies perturbation to their current positions during learning. We apply our approach specifically to the urban traffic simulation problem and evaluate it on the real-world large-scale pNEUMA dataset, achieving better short-term microscopic and long-term macroscopic similarity to real-world data than state-of-the-art baselines.Comment: updat

    Mutation of Gemin5 Causes Defective Hematopoietic Stem/Progenitor Cells Proliferation in Zebrafish Embryonic Hematopoiesis

    Get PDF
    Fate determination and expansion of Hematopoietic Stem and Progenitor Cells (HSPCs) is tightly regulated on both transcriptional and post-transcriptional level. Although transcriptional regulation of HSPCs have achieved a lot of advances, its post-transcriptional regulation remains largely underexplored. The small size and high fecundity of zebrafish makes it extraordinarily suitable to explore novel genes playing key roles in definitive hematopoiesis by large-scale forward genetics screening. Here, we reported a novel zebrafish mutant line gemin5cas008 with a point mutation in gemin5 gene obtained by ENU mutagenesis and genetic screening, causing an earlier stop codon next to the fifth WD repeat. Gemin5 is an RNA-binding protein with multifunction in post-transcriptional regulation, such as regulating the biogenesis of snRNPs, alternative splicing, stress response, and translation control. The mutants displayed specific deficiency in definitive hematopoiesis without obvious defects during primitive hematopoiesis. Further analysis showed the impaired definitive hematopoiesis was due to defective proliferation of HSPCs. Overall, our results indicate that Gemin5 performs an essential role in regulating HSPCs proliferation

    Anti-tumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatocellular carcinoma is difficult to diagnose early, and most patients are already in the late stages of the disease when they are admitted to hospital. The total 5-year survival rate is less than 5%. Recent studies have showed that brucine has a good anti-tumor effect, but high toxicity, poor water solubility, short half-life, narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study evaluated the effects of brucine immuno-nanoparticles (BIN) on hepatocellular carcinoma. MATERIALS AND METHODS: Anionic polymerization, chemical modification technology, and phacoemulsification technology were used to prepare a carboxylated polyethylene glycol-polylactic acid copolymer carrier material. Chemical coupling technology was utilized to develop antihuman AFP McAb-polyethylene glycol-polylactic acid copolymer BIN. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these immune-nanoparticles were studied in vitro. The targeting, and growth, invasion, and metastasis inhibitory effects of this treatment on liver cancer SMMC-7721 cells were tested. RESULTS: BIN were of uniform size with an average particle size of 249 ± 77 nm and zeta potential of -18.7 ± 4.19 mV. The encapsulation efficiency was 76.0% ± 2.3% and the drug load was 5.6% ± 0.2%. Complete uptake and even distribution around the liver cancer cell membrane were observed. CONCLUSION: BIN had even size distribution, was stable, and had a slow-releasing effect. BIN targeted the cell membrane of the liver cancer cell SMMC-7721 and significantly inhibited the growth, adhesion, invasion, and metastasis of SMMC-7721 cells. As a novel drug carrier system, BIN are a potentially promising targeting treatment for liver cancer

    Clinical Validation of Integrated Nucleic Acid and Protein Detection on an Electrochemical Biosensor Array for Urinary Tract Infection Diagnosis

    Get PDF
    BACKGROUND: Urinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both). CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for multiplexed detection of nucleic acid and protein as the next generation of urinary tract infection diagnostics

    The LEGUE Input Catalogue for Dark Night Observing in the LAMOST Pilot Survey

    Full text link
    We outline the design of the dark nights portion of the LAMOST Pilot Survey, which began observations in October 2011. In particular, we focus on Milky Way stellar candidates that are targeted for the LEGUE (LAMOST Experiment for Galactic Understanding and Exploration) survey. We discuss the regions of sky in which spectroscopic candidates were selected, and the motivations for selecting each of these sky areas. Some limitations due to the unique design of the telescope are discussed, including the requirement that a bright (V < 8) star be placed at the center of each plate for wavefront sensing and active optics corrections. The target selection categories and scientific goals motivating them are briefly discussed, followed by a detailed overview of how these selection functions were realized. We illustrate the difference between the overall input catalog - Sloan Digital Sky Survey (SDSS) photometry - and the final targets selected for LAMOST observation.Comment: 11 pages, 7 figures, accepted for publication in RA

    In situ tuning of dynamical Coulomb blockade on Andreev bound states in hybrid nanowire devices

    Full text link
    Electron interactions in quantum devices can exhibit intriguing phenomena. One example is assembling an electronic device in series with an on-chip resistor. The quantum laws of electricity of the device is modified at low energies and temperatures by dissipative interactions induced by the resistor, a phenomenon known as dynamical Coulomb blockade (DCB). The DCB strength is usually non-adjustable in a fixed environment defined by the resistor. Here, we design an on-chip circuit for InAs-Al hybrid nanowires where the DCB strength can be gate-tuned in situ. InAs-Al nanowires could host Andreev or Majorana zero-energy states. This technique enables tracking the evolution of the same state while tuning the DCB strength from weak to strong. We observe the transition from a zero-bias conductance peak to split peaks for Andreev zero-energy states. Our technique opens the door to in situ tuning interaction strength on zero-energy states

    Effect of magnesium sulfate on cerebral vasospasm in the treatment of aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis

    Get PDF
    IntroductionThe use of magnesium sulfate for treating aneurysmal subarachnoid hemorrhage (aSAH) has shown inconsistent results across studies. To assess the impact of magnesium sulfate on outcomes after aSAH, we conducted a systematic review and meta-analysis of relevant randomized controlled trials.MethodsPubMed, Embase, and the Cochrane Library were searched for relevant literature on magnesium sulfate for aSAH from database inception to March 20, 2023. The primary outcome was cerebral vasospasm (CV), and secondary outcomes included delayed cerebral ischemia (DCI), secondary cerebral infarction, rebleeding, neurological dysfunction, and mortality.ResultsOf the 558 identified studies, 16 comprising 3,503 patients were eligible and included in the analysis. Compared with control groups (saline or standard treatment), significant differences were reported in outcomes of CV [odds ratio (OR) = 0.61, p = 0.04, 95% confidence interval (CI) (0.37–0.99)], DCI [OR = 0.57, p = 0.01, 95% CI (0.37–0.88)], secondary cerebral infarction [OR = 0.49, p = 0.01, 95% CI (0.27–0.87)] and neurological dysfunction [OR = 0.55, p = 0.04, 95% CI (0.32–0.96)] after magnesium sulfate administration, with no significant differences detected in mortality [OR = 0.92, p = 0.47, 95% CI (0.73–1.15)] and rebleeding [OR = 0.68, p = 0.55, 95% CI (0.19–2.40)] between the two groups.ConclusionThe superiority of magnesium sulfate over standard treatments for CV, DCI, secondary cerebral infarction, and neurological dysfunction in patients with aSAH was demonstrated. Further randomized trials are warranted to validate these findings with increased sample sizes

    An Algorithm for Preferential Selection of Spectroscopic Targets in LEGUE

    Full text link
    We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011.Comment: 17 pages, 7 figures, accepted for publication in RA
    • …
    corecore