9,947 research outputs found

    Analytical Solutions to General Anti-Plane Shear Problems In Finite Elasticity

    Full text link
    This paper presents a pure complementary energy variational method for solving anti-plane shear problem in finite elasticity. Based on the canonical duality-triality theory developed by the author, the nonlinear/nonconex partial differential equation for the large deformation problem is converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a complete set of stress solutions. Therefore, a general analytical solution form of the deformation is obtained subjected to a compatibility condition. Applications are illustrated by examples with both convex and nonconvex stored strain energies governed by quadratic-exponential and power-law material models, respectively. Results show that the nonconvex variational problem could have multiple solutions at each material point, the complementary gap function and the triality theory can be used to identify both global and local extremal solutions, while the popular (poly-, quasi-, and rank-one) convexities provide only local minimal criteria, the Legendre-Hadamard condition does not guarantee uniqueness of solutions. This paper demonstrates again that the pure complementary energy principle and the triality theory play important roles in finite deformation theory and nonconvex analysis.Comment: 23 pages, 4 figures. Mathematics and Mechanics of Solids, 201

    Global Solutions to Nonconvex Optimization of 4th-Order Polynomial and Log-Sum-Exp Functions

    Full text link
    This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of fourth-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical duality-triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples
    • …
    corecore