This paper presents a canonical dual approach for solving a nonconvex global
optimization problem governed by a sum of fourth-order polynomial and a
log-sum-exp function. Such a problem arises extensively in engineering and
sciences. Based on the canonical duality-triality theory, this nonconvex
problem is transformed to an equivalent dual problem, which can be solved
easily under certain conditions. We proved that both global minimizer and the
biggest local extrema of the primal problem can be obtained analytically from
the canonical dual solutions. As two special cases, a quartic polynomial
minimization and a minimax problem are discussed. Existence conditions are
derived, which can be used to classify easy and relative hard instances.
Applications are illustrated by several nonconvex and nonsmooth examples