436 research outputs found

    Improvement of Refrigeration Efficiency by Combining Reinforcement Learning with a Coarse Model

    Get PDF
    It is paramount to improve operational conversion efficiency in air-conditioning refrigeration. It is noticed that control efficiency for model-based methods highly relies on the accuracy of the mechanism model, and data-driven methods would face challenges using the limited collected data to identify the information beyond. In this study, a hybrid novel approach is presented, which is to integrate a data-driven method with a coarse model. Specifically, reinforcement learning is used to exploit/explore the conversion efficiency of the refrigeration, and a coarse model is utilized to evaluate the reward, by which the requirement of the model accuracy is reduced and the model information is better used. The proposed approach is implemented based on a hierarchical control strategy which is divided into a process level and a loop level. The simulation of a test bed shows the proposed approach can achieve better conversion efficiency of refrigeration than the conventional methods

    Mantle Structure and Flow Beneath an Early-Stage Continental Rift: Constraints from P Wave Anisotropic Tomography

    Get PDF
    To explore 3-D seismic velocity and radial anisotropy structures of the upper mantle and mantle transition zone beneath the Malawi and Luangwa rift zones of the East African Rift System, we conduct the first study of P wave anisotropic tomography using data recorded at 75 seismic stations including 34 stations that we installed along two profiles as part of the Seismic Arrays for African Rift Initiation experiment. Both rift zones are revealed to have normal or slightly low velocity anomalies in the lithosphere and upper asthenosphere. The surrounding cratonic lithosphere is characterized by high-velocity anomalies with amplitudes ranging from +1.0% to +2.0%. Negative radial anisotropy, which is indicative of upwelling or downwelling in the mantle, is mainly distributed beneath the rift zones, whereas the other areas mostly feature positive radial anisotropy that implies horizontal flow. A prominent circular low-velocity anomaly exists in the top 200 km of the upper mantle beneath the Rungwe Volcanic Province without obvious connections to the lower mantle. Combining the present findings with previous geodetic and tomography results, we interpret the Rungwe Volcanic Province magmatism as primarily due to decompression melting in response to lithospheric extension induced by the counterclockwise and clockwise rotations of the Victoria and Rovuma microplates, respectively, with respect to the Nubian plate. Isolated mantle upwelling, which is indicated by scattered low-velocity anomalies and negative radial anisotropy beneath the Malawi rift zone, may contribute to the incipient rifting

    Interfacial Properties of Bilayer and Trilayer Graphene on Metal Substrates

    Full text link
    One popular approach to prepare graphene is to grow them on transition metal substrates via chemical vapor deposition. By using the density functional theory with dispersion correction, we systematically investigate for the first time the interfacial properties of bilayer (BLG) and trilayer graphene (TLG) on metal substrates. Three categories of interfacial structures are revealed. The adsorption of B(T)LG on Al, Ag, Cu, Au, and Pt substrates is a weak physisorption, but a band gap can be opened. The adsorption of B(T)LG on Ti, Ni, and Co substrates is a strong chemisorption, and a stacking-insensitive band gap is opened for the two uncontacted layers of TLG. The adsorption of B(T)LG on Pd substrate is a weaker chemisorption, with a band gap opened for the uncontacted layers. This fundamental study also helps for B(T)LG device study due to inevitable graphene/metal contact.Comment: 1 table, 8 figure

    Continental Break‐Up Under a Convergent Setting: Insights From P Wave Radial Anisotropy Tomography of the Woodlark Rift in Papua New Guinea

    Get PDF
    To explore the dynamic mechanism of continental rifting within a convergent setting, we determine the first P wave radial anisotropic tomography beneath the Woodlark rift in southeastern Papua New Guinea, which develops within the obliquely colliding zone between the Australian and southwest Pacific plates. The rift zone is depicted as localized low‐velocity anomalies with positive radial anisotropy, which rules out a dominant role of active mantle upwelling in promoting the rift development and favors passive rifting with decompression melting as main processes. Downwelling slab relics in the upper mantle bounding the rift zone are revealed based on observed high‐velocity anomalies and negative radial anisotropy, which may contribute to the ultra‐high pressure rock exhumations and rift initiation. Our observations thus indicate that the Woodlark rift follows a passive model and is mainly driven by slab pull from the northward subduction of the Solomon plate

    Influences of phase transition and microstructure on dielectric properties of Bi0.5Na0.5Zr1-xTixO3 ceramics

    Get PDF
    Bismuth sodium zirconate titanate ceramics with the formula Bi0.5Na0.5Zr1-xTixO3 [BNZT], where x = 0.3, 0.4, 0.5, and 0.6, were prepared by a conventional solid-state sintering method. Phase identification was investigated using an X-ray diffraction technique. All compositions exhibited complete solubility of Ti4+ at the Zr4+ site. Both a decrease of unit cell size and phase transition from an orthorhombic Zr-rich composition to a rhombohedral crystal structure in a Ti-rich composition were observed as a result of Ti4+ substitution. These changes caused dielectric properties of BNZT ceramics to enhance. Microstructural observation carried out employing SEM showed that average grain size decreased when addition of Ti increased. Grain size difference of BNZT above 0.4 mole fraction of Ti4+ displayed a significant increase of dielectric constant at room temperature

    Continental Break-Up under a Convergent Setting: Insights from P Wave Radial Anisotropy Tomography of the Woodlark Rift in Papua New Guinea

    Get PDF
    To explore the dynamic mechanism of continental rifting within a convergent setting, we determine the first P wave radial anisotropic tomography beneath the Woodlark rift in southeastern Papua New Guinea, which develops within the obliquely colliding zone between the Australian and southwest Pacific plates. The rift zone is depicted as localized low-velocity anomalies with positive radial anisotropy, which rules out a dominant role of active mantle upwelling in promoting the rift development and favors passive rifting with decompression melting as main processes. Downwelling slab relics in the upper mantle bounding the rift zone are revealed based on observed high-velocity anomalies and negative radial anisotropy, which may contribute to the ultra-high pressure rock exhumations and rift initiation. Our observations thus indicate that the Woodlark rift follows a passive model and is mainly driven by slab pull from the northward subduction of the Solomon plate

    Real-Time Parameter Identification for Forging Machine Using Reinforcement Learning

    Get PDF
    It is a challenge to identify the parameters of a mechanism model under real-time operating conditions disrupted by uncertain disturbances due to the deviation between the design requirement and the operational environment. In this paper, a novel approach based on reinforcement learning is proposed for forging machines to achieve the optimal model parameters by applying the raw data directly instead of observation window. This approach is an online parameter identification algorithm in one period without the need of the labelled samples as training database. It has an excellent ability against unknown distributed disturbances in a dynamic process, especially capable of adapting to a new process without historical data. The effectiveness of the algorithm is demonstrated and validated by a simulation of acquiring the parameter values of a forging machine
    corecore