2,409 research outputs found
Flat band electrons and interactions in rhombohedral trilayer graphene
Multilayer graphene systems with a rhombohedral stacking order harbor nearly
flat bands in their single-particle spectrum. We propose ansatz states to
describe the surface-localized states of flat band electrons. The absence of
kinetic dispersion near the fermi level leaves the interaction as a dominate
mechanism to govern the low energy physics of a low density electron system. We
build up an effective lattice model in two interacting low-energy bands, where
the full terms of the Coulomb interaction, including those long-range and
off-diagonal parts, have been considered. The interaction matrix coefficients
in the many-body Hamiltonian model are directly calculated for a trilayer
system using orthonormal Wannier basis. We then present a flat-band projection
to yield an interaction-only lattice model for flat band electrons. We find
that this limited model might energetically favor a ferromagnetic quantum
crystal under certain conditions.Comment: 8 pages, 3 figures, 3 tables. add journal reference and some
discussions in the context. arXiv admin note: text overlap with
arXiv:1108.008
Layer Antiferromagnetic State in Bilayer Graphene : A First-Principle Investigation
The ground state of bilayer graphene is investigated by the density
functional calculations with local spin density approximation. We find a ground
state with layer antiferromagnetic ordering, which has been suggested by former
studies based on simplified model. The calculations prove that the layer
antiferromagnetic state (LAF) is stable even if the remote hopping and nonlocal
Coulomb interaction are included. The gap of the LAF state is about 1.8 meV,
comparable to the experimental value. The surface magnetism in BLG is of the
order of
Anderson Impurity in Helical Metal
We use a trial wave function to study the spin-1/2 Kondo effect of a helical
metal on the surface of a three-dimensional topological insulator. While the
impurity spin is quenched by conduction electrons, the spin-spin correlation of
the conduction electron and impurity is strongly anisotropic in both spin and
spatial spaces. As a result of strong spin-orbit coupling, the out-of-plane
component of the impurity spin is found to be fully screened by the orbital
angular momentum of the conduction electrons.Comment: The published versio
Giant mesoscopic spin Hall effect on surface of topological insulator
We study mesoscopic spin Hall effect on the surface of topological insulator
with a step-function potential. The giant spin polarization induced by a
transverse electric current is derived analytically by using McMillan method in
the ballistic transport limit, which oscillates across the potential boundary
with no confinement from the potential barrier due to the Klein paradox, and
should be observable in spin resolved scanning tunneling microscope.Comment: 5 pages, 3 figure
Theory for charge and orbital density-wave states in manganite LaSrMnO
We investigate the high temperature phase of layered manganites, and
demonstrate that the charge-orbital phase transition without magnetic order in
LaSrMnO can be understood in terms of the density wave
instability. The orbital ordering is found to be induced by the nesting between
segments of Fermi surface with different orbital characters. The simultaneous
charge and orbital orderings are elaborated with a mean field theory. The
ordered orbitals are shown to be .Comment: published versio
Half Metallic Bilayer Graphene
Charge neutral bilayer graphene has a gapped ground state as transport
experiments demonstrate. One of the plausible such ground states is layered
antiferromagnetic spin density wave (LAF) state, where the spins in top and
bottom layers have same magnitude with opposite directions. We propose that
lightly charged bilayer graphene in an electric field perpendicular to the
graphene plane may be a half metal as a consequence of the inversion and
particle-hole symmetry broken in the LAF state. We show this explicitly by
using a mean field theory on a 2-layer Hubbard model for the bilayer graphene.Comment: 4+ pages, 4 figure
Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection
We theoretically investigate the phase sensitivity with parity detection on
an SU(1,1) interferometer with a coherent state combined with a squeezed vacuum
state. This interferometer is formed with two parametric amplifiers for beam
splitting and recombination instead of beam splitters. We show that the
sensitivity of estimation phase approaches Heisenberg limit and give the
corresponding optimal condition. Moreover, we derive the quantum Cram\'er-Rao
bound of the SU(1,1) interferometer.Comment: 9 pages, 2 figures, 3 table
Localized States and Quantum Spin Hall Effect in Si-Doped InAs/GaSb Quantum Wells
We study localized in-gap states and quantum spin Hall effect in Si-doped
InAs/GaSb quantum wells. We propose a model describing donor and/or acceptor
impurities to describe Si dopants. This model shows in-gap bound states and
wide conductance plateau with the quantized value in light dopant
concentration, consistent with recent experiments by Du et al. We predict a
conductance dip structure due to backward scattering in the region where the
localization length is comparable with the sample width but much
smaller than the sample length .Comment: 4+pages main text including 4 figures, supplementary materials with 3
figures are include
- …