2,600 research outputs found

    Aggregate Hazes in Exoplanet Atmospheres

    Get PDF
    Photochemical hazes have been frequently used to interpret exoplanet transmission spectra that show an upward slope towards shorter wavelengths and weak molecular features. While previous studies have only considered spherical haze particles, photochemical hazes composed of hydrocarbon aggregate particles are common throughout the solar system. We use an aerosol microphysics model to investigate the effect of aggregate photochemical haze particles on transmission spectra of warm exoplanets. We find that the wavelength dependence of the optical depth of aggregate particle hazes is flatter than for spheres since aggregates grow to larger radii. As a result, while spherical haze opacity displays a scattering slope towards shorter wavelengths, aggregate haze opacity can be gray in the optical and NIR, similar to those assumed for condensate cloud decks. We further find that haze opacity increases with increasing production rate, decreasing eddy diffusivity, and increasing monomer size, though the magnitude of the latter effect is dependent on production rate and the atmospheric pressure levels probed. We generate synthetic exoplanet transmission spectra to investigate the effect of these hazes on spectral features. For high haze opacity cases, aggregate hazes lead to flat, nearly featureless spectra, while spherical hazes produce sloped spectra with clear spectral features at long wavelengths. Finally, we generate synthetic transmission spectra of GJ 1214b for aggregate and spherical hazes and compare them to space-based observations. We find that aggregate hazes can reproduce the data significantly better than spherical hazes, assuming a production rate limited by delivery of methane to the upper atmosphere.Comment: 17 figures, accepted to Ap

    An overview of clustering methods with guidelines for application in mental health research

    Get PDF
    Cluster analyzes have been widely used in mental health research to decompose inter-individual heterogeneity by identifying more homogeneous subgroups of individuals. However, despite advances in new algorithms and increasing popularity, there is little guidance on model choice, analytical framework and reporting requirements. In this paper, we aimed to address this gap by introducing the philosophy, design, advantages/disadvantages and implementation of major algorithms that are particularly relevant in mental health research. Extensions of basic models, such as kernel methods, deep learning, semi-supervised clustering, and clustering ensembles are subsequently introduced. How to choose algorithms to address common issues as well as methods for pre-clustering data processing, clustering evaluation and validation are then discussed. Importantly, we also provide general guidance on clustering workflow and reporting requirements. To facilitate the implementation of different algorithms, we provide information on R functions and librarie

    Pixel-tracking derived strain using the GlasgowHeart Method.

    Get PDF
    Background: Estimation of strain parameters from cine acquisitions, such as balanced steady state free precession (b-SSFP) is advantageous, as it would obviate the need for acquisition of additional strain sequences reducing scanning time and making strain more accessible to clinicians. 2D strain derived from feature-tracking is now commercially available. The GlasgowHeart cine-strain method is designed to overcome some limitations of currently available feature-tracking methods by estimating pixel-wise strain for myocardial deformation incorporating all of the myocardial tissues. The aims of this pilot study was to ensure that 2D peak circumferential strain estimated from the GlasgowHeart method is feasible in healthy volunteers (n = 20) and reproducible with minimal intra- and inter- observer variability. Methods: Healthy volunteers aged at least 18 years of age with no prior medical history were invited to participate. A subset of 20 healthy adult volunteers underwent 1.5T CMR twice, < 2 days apart. Written consent was obtained. Mid-LV cine sequences, were analysed with the GlasgowHeart software. The process involves contouring the myocardial borders at end-diastole and segmenting the myocardium by using the right ventricular insertion point according to the 16 segment AHA model. Two observers independently analysed 40 short axis slices using the cine-strain method for inter-observer variability. One observer re-analysed the 40 short axis slices 10 days later for intra-observer variability. Scans were analysed in a random order. Pearson correlation and Bland-Altman analysis were used to analyse the data. Results: 20 participants were used in the subset analysis (mean age ± SD 49.5 years (17.2) 50% male). Peak circumferential strain (Ecc) measured on the first set of MRIs by the two observers (Figure 2A,B) was highly correlated (R = 0.915, p < 0.001) and in excellent agreement (mean difference = 0.01; 95% LoA: -0.01, 0.02). The repeated image analysis (Figure 2C,D) also disclosed a high degree of association in paired measurements of Ecc that was strongly correlated(R= 0.915, p< 0.001) and in excellent agreement (mean difference = 0.00; 95% LoA: -0.02, 0.01). Ecc measured in the second set of MRIs by 2 observers was well correlated (R = 0.937, p < 0.001) and in excellent agreement (mean difference = 0.00; 95% limits of agreement were -0.016 and 0.021). The repeated image analysis at follow-up yielded Ecc that was well correlated(R= 0.942, p < 0.001) and in excellent agreement (mean = 0.00; 95% LoA: -0.009 and 0.009). There was no difference between the average global Ecc at different time points (p > 0.05)

    A novel method for estimating myocardial strain: assessment of deformation tracking against reference magnetic resonance methods in healthy volunteers

    Get PDF
    We developed a novel method for tracking myocardial deformation using cardiac magnetic resonance (CMR) cine imaging. We hypothesised that circumferential strain using deformation-tracking has comparable diagnostic performance to a validated method (Displacement Encoding with Stimulated Echoes- DENSE) and potentially diagnostically superior to an established cine-strain method (feature-tracking). 81 healthy adults (44.6 ± 17.7 years old, 47% male), without any history of cardiovascular disease, underwent CMR at 1.5T including cine, DENSE, and late gadolinium enhancement in subjects >45 years. Acquisitions were divided into 6 segments, and global and segmental peak circumferential strain were derived and analysed by age and sex. Peak circumferential strain differed between the 3 groups (DENSE: -19.4 ± 4.8 %; deformation-tracking: -16.8 ± 2.4 %; feature-tracking: -28.7 ± 4.8%) (ANOVA with Tukey post-hoc, F-value 279.93, p<0.01). DENSE and deformation-tracking had better reproducibility than feature-tracking. Intra-class correlation co-efficient was >0.90. Larger magnitudes of strain were detected in women using deformation-tracking and DENSE, but not feature-tracking. Compared with a reference method (DENSE), deformation-tracking using cine imaging has similar diagnostic performance for circumferential strain assessment in healthy individuals. Deformation-tracking could potentially obviate the need for bespoke strain sequences, reducing scanning time and is more reproducible than feature-tracking

    Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase

    Get PDF
    A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis—an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.National Institutes of Health (U.S.) (Grant R01CA103866)National Institutes of Health (U.S.) (Grant R37AI047389
    • …
    corecore