94 research outputs found

    Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses

    Get PDF
    Over 4 million infants die each year from infections, many of which are vaccine-preventable. Young infants respond relatively poorly to many infections and vaccines, but the basis of reduced immunity in infants is ill defined. We sought to investigate whether myeloid-derived suppressor cells (MDSC) represent one potential impediment to protective immunity in early life, which may help inform strategies for effective vaccination prior to pathogen exposure. We enrolled healthy neonates and children in the first 2 years of life along with healthy adult controls to examine the frequency and function of MDSC, a cell population able to potently suppress T cell responses. We found that MDSC, which are rarely seen in healthy adults, are present in high numbers in neonates and their frequency rapidly decreases during the first months of life. We determined that these neonatal MDSC are of granulocytic origin (G-MDSC), and suppress both CD4+ and CD8+ T cell proliferative responses in a contact-dependent manner and gamma interferon production. Understanding the role G-MDSC play in infant immunity could improve vaccine responsiveness in newborns and reduce mortality due to early-life infections

    Nelfinavir Impairs Glycosylation of Herpes Simplex Virus 1 Envelope Proteins and Blocks Virus Maturation

    Get PDF
    Nelfinavir (NFV) is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs). Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1) in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication

    Higher expectations for a vaccine to prevent congenital cytomegalovirus infection

    No full text
    SCOPUS: le.jinfo:eu-repo/semantics/publishe

    Effects of spatiotemporal HSV-2 lesion dynamics and antiviral treatment on the risk of HIV-1 acquisition.

    No full text
    Patients with Herpes Simplex Virus-2 (HSV-2) infection face a significantly higher risk of contracting HIV-1. This is thought to be due to herpetic lesions serving as entry points for HIV-1 and tissue-resident CD4+ T cell counts increasing during HSV-2 lesional events. We have created a stochastic and spatial mathematical model describing the dynamics of HSV-2 infection and immune response in the genital mucosa. Using our model, we first study the dynamics of a developing HSV-2 lesion. We then use our model to quantify the risk of infection with HIV-1 following sexual exposure in HSV-2 positive women. Untreated, we find that HSV-2 infected women are up to 8.6 times more likely to acquire HIV-1 than healthy patients. However, when including the effects of the HSV-2 antiviral drug, pritelivir, the risk of HIV-1 infection is predicted to decrease by up to 35%, depending on drug dosage. We estimate the relative importance of decreased tissue damage versus decreased CD4+ cell presence in determining the effectiveness of pritelivir in reducing HIV-1 infection. Our results suggest that clinical trials should be performed to evaluate the effectiveness of pritelivir or similar agents in preventing HIV-1 infection in HSV-2 positive women

    The Potential Harm of Cytomegalovirus Infection in Immunocompetent Critically Ill Children

    No full text
    Cytomegalovirus (CMV) is a ubiquitous infection that causes disease in congenitally infected children and immunocompromised patients. Although nearly all CMV infections remain latent and asymptomatic in immunologically normal individuals, numerous studies have found that systemic viral reactivation is common in immunocompetent critically ill adults, as measured by detection of CMV in the blood (viremia). Furthermore, CMV viremia is strongly correlated with adverse outcomes in the adult intensive care unit (ICU), including prolonged stay, duration of mechanical ventilation, and death. Increasing evidence, including from a randomized clinical trial of antiviral treatment, suggests that these effects of CMV may be causal. Therefore, interventions targeting CMV might improve outcomes in adult ICU patients. CMV may have an even greater impact on critically ill children, particularly in low and middle income countries (LMIC), where CMV is regularly acquired in early childhood, and where inpatient morbidity and mortality are inordinately high. However, to date, there are few data regarding the clinical relevance of CMV infection or viremia in immunocompetent critically ill children. We propose that CMV infection should be studied as a potential modifiable cause of disease in critically ill children, and that these studies be conducted in LMIC. Below, we briefly review the role of CMV in immunologically normal critically ill adults and children, outline age-dependent differences in CMV infection that may influence ICU outcomes, and describe an agenda for future research
    • …
    corecore