179 research outputs found

    A Machine-Synesthetic Approach To DDoS Network Attack Detection

    Full text link
    In the authors' opinion, anomaly detection systems, or ADS, seem to be the most perspective direction in the subject of attack detection, because these systems can detect, among others, the unknown (zero-day) attacks. To detect anomalies, the authors propose to use machine synesthesia. In this case, machine synesthesia is understood as an interface that allows using image classification algorithms in the problem of detecting network anomalies, making it possible to use non-specialized image detection methods that have recently been widely and actively developed. The proposed approach is that the network traffic data is "projected" into the image. It can be seen from the experimental results that the proposed method for detecting anomalies shows high results in the detection of attacks. On a large sample, the value of the complex efficiency indicator reaches 97%.Comment: 12 pages, 2 figures, 5 tables. Accepted to the Intelligent Systems Conference (IntelliSys) 201

    When is a Hamiltonian matrix the commutator of two skew-Hamiltonian matrices?

    Get PDF
    The mapping (Formula presented.) , where the matrices (Formula presented.) are skew-Hamiltonian with respect to transposition, is studied. Let (Formula presented.) be the range of (Formula presented.) : we give an implicit characterization of (Formula presented.) , obtaining results that find an application in algebraic geometry. Namely, they are used in [R. Abuaf and A. Boralevi, Orthogonal bundles and skew-Hamiltonian matrices, Submitted] to study orthogonal vector bundles. We also give alternative and more explicit characterizations of (Formula presented.) for (Formula presented.). Moreover, we prove that for (Formula presented.) , the complement of (Formula presented.) is nowhere dense in the set of (Formula presented.) -dimensional Hamiltonian matrices, denoted by (Formula presented.) , implying that almost all matrices in (Formula presented.) are in (Formula presented.) for (Formula presented.). Finally, we show that (Formula presented.) is never surjective as a mapping from (Formula presented.) to (Formula presented.) , where (Formula presented.) is the set of (Formula presented.) -dimensional skew-Hamiltonian matrices. Along the way, we discuss the connections of this problem with several existing results in matrix theory

    Geometry of lines and degeneracy loci of morphisms of vector bundles

    Full text link
    Corrado Segre played a leading role in the foundation of line geometry. We survey some recent results on degeneracy loci of morphisms of vector bundles where he still is of profound inspiration.Comment: 10 pages. To appear in the proceedings of the conference "Homage to Corrado Segre

    Physical realization of coupled Hilbert-space mirrors for quantum-state engineering

    Full text link
    Manipulation of superpositions of discrete quantum states has a mathematical counterpart in the motion of a unit-length statevector in an N-dimensional Hilbert space. Any such statevector motion can be regarded as a succession of two-dimensional rotations. But the desired statevector change can also be treated as a succession of reflections, the generalization of Householder transformations. In multidimensional Hilbert space such reflection sequences offer more efficient procedures for statevector manipulation than do sequences of rotations. We here show how such reflections can be designed for a system with two degenerate levels - a generalization of the traditional two-state atom - that allows the construction of propagators for angular momentum states. We use the Morris-Shore transformation to express the propagator in terms of Morris-Shore basis states and Cayley-Klein parameters, which allows us to connect properties of laser pulses to Hilbert-space motion. Under suitable conditions on the couplings and the common detuning, the propagators within each set of degenerate states represent products of generalized Householder reflections, with orthogonal vectors. We propose physical realizations of this novel geometrical object with resonant, near-resonant and far-off-resonant laser pulses. We give several examples of implementations in real atoms or molecules.Comment: 15 pages, 6 figure

    Boundaries of Disk-like Self-affine Tiles

    Full text link
    Let T:=T(A,D)T:= T(A, {\mathcal D}) be a disk-like self-affine tile generated by an integral expanding matrix AA and a consecutive collinear digit set D{\mathcal D}, and let f(x)=x2+px+qf(x)=x^{2}+px+q be the characteristic polynomial of AA. In the paper, we identify the boundary T\partial T with a sofic system by constructing a neighbor graph and derive equivalent conditions for the pair (A,D)(A,{\mathcal D}) to be a number system. Moreover, by using the graph-directed construction and a device of pseudo-norm ω\omega, we find the generalized Hausdorff dimension dimHω(T)=2logρ(M)/logq\dim_H^{\omega} (\partial T)=2\log \rho(M)/\log |q| where ρ(M)\rho(M) is the spectral radius of certain contact matrix MM. Especially, when AA is a similarity, we obtain the standard Hausdorff dimension dimH(T)=2logρ/logq\dim_H (\partial T)=2\log \rho/\log |q| where ρ\rho is the largest positive zero of the cubic polynomial x3(p1)x2(qp)xqx^{3}-(|p|-1)x^{2}-(|q|-|p|)x-|q|, which is simpler than the known result.Comment: 26 pages, 11 figure

    Inverse spin-s portrait and representation of qudit states by single probability vectors

    Full text link
    Using the tomographic probability representation of qudit states and the inverse spin-portrait method, we suggest a bijective map of the qudit density operator onto a single probability distribution. Within the framework of the approach proposed, any quantum spin-j state is associated with the (2j+1)(4j+1)-dimensional probability vector whose components are labeled by spin projections and points on the sphere. Such a vector has a clear physical meaning and can be relatively easily measured. Quantum states form a convex subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits (j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and (2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s portraits. We also address an auxiliary problem of the optimum reconstruction of qudit states, where the optimality implies a minimum relative error of the density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian Laser Researc

    Discrete Determinants and the Gel'fand-Yaglom formula

    Full text link
    I present a partly pedagogic discussion of the Gel'fand-Yaglom formula for the functional determinant of a one-dimensional, second order difference operator, in the simplest settings. The formula is a textbook one in discrete Sturm-Liouville theory and orthogonal polynomials. A two by two matrix approach is developed and applied to Robin boundary conditions. Euler-Rayleigh sums of eigenvalues are computed. A delta potential is introduced as a simple, non-trivial example and extended, in an appendix, to the general case. The continuum limit is considered in a non--rigorous way and a rough comparison with zeta regularised values is made. Vacuum energies are also considered in the free case. Chebyshev polynomials act as free propagators and their properties are developed using the two-matrix formulation, which has some advantages and appears to be novel. A trace formula, rather than a determinant one, is derived for the Gel'fand-Yaglom function.Comment: 29 pages. Submitted version. Typos corrected and adjustments made. Comments and references adde

    Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics

    Full text link
    Symmetric informationally complete positive operator valued measures (SIC-POVMs) are studied within the framework of the probability representation of quantum mechanics. A SIC-POVM is shown to be a special case of the probability representation. The problem of SIC-POVM existence is formulated in terms of symbols of operators associated with a star-product quantization scheme. We show that SIC-POVMs (if they do exist) must obey general rules of the star product, and, starting from this fact, we derive new relations on SIC-projectors. The case of qubits is considered in detail, in particular, the relation between the SIC probability representation and other probability representations is established, the connection with mutually unbiased bases is discussed, and comments to the Lie algebraic structure of SIC-POVMs are presented.Comment: 22 pages, 1 figure, LaTeX, partially presented at the Workshop "Nonlinearity and Coherence in Classical and Quantum Systems" held at the University "Federico II" in Naples, Italy on December 4, 2009 in honor of Prof. Margarita A. Man'ko in connection with her 70th birthday, minor misprints are corrected in the second versio
    corecore