11 research outputs found
CR Gantla 2.pmd
ABSTRACT A series of thiazolidin-4-one have been synthesized by condensation of 4,4'-diamnodiaphenyl sulphone with four different substituted aromatic aldehyde to yield the Schiffsbases. Cyclocondensation of schiff"s bases with thioglycolic acid afforded bis 4,4'-(2-substituted aryl thiazolidine-4-one)diphenyl sulphone. The structure of newly synthesized compounds were confirmed analytical and spectral (IR & PNMR) data. All these compounds were evaluated for their insecticidalactivity. All four compounds have equipotent Insecticidal activity with the standard drug cypermethrin
ndvF, a novel locus located on megaplasmid pRmeSU47b (pEXO) of Rhizobium meliloti, is required for normal nodule development.
Rhizobium meliloti strains carrying either of two overlapping deletions (delta 5408 and delta F114) of the megaplasmid pRmeSU47b form nodules on alfalfa which fail to fix N2 (Fix-). Strains carrying these deletions also fail to fluoresce on media containing calcofluor, indicating a defect in synthesis of the acidic exopolysaccharide (Exo-) of R. meliloti. We have isolated cosmid clones (pTH21 and pTH22) which complement the Fix- but not the Exo- phenotype of the strains carrying the delta 5408 and delta F114 deletions. In addition, cosmid clones which complement the Exo- phenotype fail to complement the Fix- phenotype of these deletions; thus, the Exo- phenotype is not related to the Fix- phenotype. A 5-kb region within a 7.3-kb BamHI restriction fragment was found to be required for complementation of the Fix- phenotype of the delta 5408 and delta F114 deletion strains. Tn5 insertions in the 5-kb region generated a Fix- phenotype when recombined into the wild-type genome. We have designated this locus ndvF, for nodule development. TnphoA mutagenesis of this region generated active alkaline-phosphatase gene fusions, indicating that ndvF encodes extracytoplasmic protein(s). Induction of nodules by the ndvF mutants was delayed by 2 to 3 days compared with induction by the wild-type strain. Light microscopy of nodules elicited by strains carrying the large 150-kb delta F114 deletion, a 12-kb deletion removing ndvF, or an individual ndvF::Tn5 insertion mutation demonstrated that many nodules contained few infected cortical cells, indicating that nodule development was blocked early in the infection process, before the release of bacteria from the infection threads
Role of cysteine residues in the function of human UDP glucuronosyltransferase isoform 1A1 (UGT1A1)
Bilirubin glucuronidation, catalysed by UGT1A1 [UGT (UDP glucuronosyltransferase) isoform 1A1, EC 2.4.1.17], is critical for biliary elimination of bilirubin. UGT1A1 deficiency causes CN-1 (Crigler–Najjar syndrome type 1), which is characterized by potentially lethal unconjugated hyperbilirubinaemia. Nucleotide sequence analysis of UGT1A1 in two CN-1 patients revealed that patient A was homozygous for a nt 530 G→A (where nt 530 G→A means guanine to adenine transition at nucleotide 530) mutation, predicting a C177Y substitution, and patient B had a nt 466 T→C mutation on one allele and a nt 1070 A→G mutation on the other, predicting a C156R and a Q357R substitution respectively. All 11 cysteine residues of mature human UGT1A1 are highly conserved in other human UGT isoforms and in rat, mouse and Rhesus monkey UGT1A1, suggesting their functional importance. Expression of mutagenized UGT1A1 plasmids showed that substitution of any of the seven cysteine residues located within the endoplasmic reticulum cisternae (including those mutated in patients A and B) abolished UGT1A1 activity or markedly increased its apparent K(m) for bilirubin. Substitution of the three cysteine residues within the C-terminal cytosolic tail had minimal effect on basal UGT1A1 activity, but prevented UGT1A1 activation by UDP-GlcNAc. N-Ethylmaleimide did not inhibit UGT1A1 activity in native microsomes, but prevented UGT1A1 activation by UDP-GlcNAc and inhibited the activity in digitonin-permeabilized microsomes. Dithiothreitol did not affect UGT1A1 activity in human liver microsomes. Together, the results suggested that free thiol groups, but not disulphide bonding, of seven cysteine residues within the intracisternal region of human UGT1A1 are important for its catalytic activity, while cysteine residues in the cytosolic domain may be involved in its physiological activation by UDP-GlcNAc
Inherited disorders of bilirubin clearance
Inherited disorders of hyperbilirubinemia may be caused by increased bilirubin production or decreased bilirubin clearance. Reduced hepatic bilirubin clearance can be due to defective 1) unconjugated bilirubin uptake and intrahepatic storage, 2) conjugation of glucuronic acid to bilirubin (e.g. Gilbert syndrome, Crigler-Najjar syndrome, Lucey-Driscoll syndrome, breast milk jaundice), 3) bilirubin excretion into bile (Dubin-Johnson syndrome), or 4) conjugated bilirubin re-uptake (Rotor syndrome). In this review, the molecular mechanisms and clinical manifestations of these conditions are described, as well as current approaches to diagnosis and therapy