10 research outputs found

    Design, characterisation and performance of an improved portable and sustainable low-field MRI system

    Get PDF
    Low-field permanent magnet-based MRI systems are finding increasing use in portable, sustainable and point-of-care applications. In order to maximize performance while minimizing cost many components of such a system should ideally be designed specifically for low frequency operation. In this paper we describe recent developments in constructing and characterising a low-field portable MRI system for in vivo imaging at 50 mT. These developments include the design of i) high-linearity gradient coils using a modified volume-based target field approach, ii) phased-array receive coils, and iii) a battery-operated three-axis gradient amplifier for improved portability and sustainability. In addition, we report performance characterisation of the RF amplifier, the gradient amplifier, eddy currents from the gradient coils, and describe a quality control protocol for the overall system.Radiolog

    In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array

    No full text
    Purpose: To design a low-cost, portable permanent magnet-based MRI system capable of obtaining in vivo MR images within a reasonable scan time. Methods: A discretized Halbach permanent magnet array with a clear bore diameter of 27 cm was designed for operation at 50 mT. Custom-built gradient coils, RF coil, gradient amplifiers, and RF amplifier were integrated and tested on both phantoms and in vivo. Results: Phantom results showed that the gradient nonlinearity in the y-direction and z-direction was less than 5% over a 15-cm FOV and did not need correcting. For the x-direction, it was significantly greater, but could be partially corrected in postprocessing. Three-dimensional in vivo scans of the brain of a healthy volunteer using a turbo spin-echo sequence were acquired at a spatial resolution of 4 × 4 × 4 mm in a time of about 2 minutes. The T1-weighted and T2-weighted scans showed a good degree of tissue contrast. In addition, in vivo scans of the knee of a healthy volunteer were acquired at a spatial resolution of about 3 × 2 × 2 mm within 12 minutes to show the applicability of the system to extremity imaging. Conclusion: This work has shown that it is possible to construct a low-field MRI unit with hardware components costing less than 10 000 Euros, which is able to acquire human images in vivo within a reasonable data-acquisition time. The system has a high degree of portability with magnet weight of approximately 75 kg, gradient and RF amplifiers each 15 kg, gradient coils 10 kg, and spectrometer 5 kg.EMSD EEMCS Project engineersCircuits and System

    Description of a low-field MRI scanner based on permanent magnets

    No full text
    More than 6,000 infants develop hydrocephalus in East Africa every year. Magnetic Resonance Imaging is the preferred technique to diagnose hydrocephalus. In countries such as Uganda, MRI is unaffordable at even major referral hospitals. In order to provide a sustainable diagnostic tool we are developing an inexpensive and easy-to-use MRI system that yields images of sufficient quality to diagnose hydrocephalus. This paper describes our first prototype of such a scanner. We explain the lessons that we have learned from this prototype and how we used these to come up with an improved design. We also describe a dataset that has been obtained with this scanner that will be made publically available.Numerical AnalysisEMSD EEMCS Project engineersCircuits and System

    Description of a low-field MRI scanner based on permanent magnets

    No full text
    More than 6,000 infants develop hydrocephalus in East Africa every year. Magnetic Resonance Imaging is the preferred technique to diagnose hydrocephalus. In countries such as Uganda, MRI is unaffordable at even major referral hospitals. In order to provide a sustainable diagnostic tool we are developing an inexpensive and easy-to-use MRI system that yields images of sufficient quality to diagnose hydrocephalus. This paper describes our first prototype of such a scanner. We explain the lessons that we have learned from this prototype and how we used these to come up with an improved design. We also describe a dataset that has been obtained with this scanner that will be made publically available.</p

    Plasmas meet plasmonics

    No full text

    Cerebrospinal fluid (CSF) analyses in HIV-1 primary neurological disease

    No full text
    corecore