6 research outputs found

    Virtual Screening in Search for a Chemical Probe for Angiotensin-Converting Enzyme 2 (ACE2)

    No full text
    We elaborate new models for ACE and ACE2 receptors with an excellent prediction power compared to previous models. We propose promising workflows for working with huge compound collections, thereby enabling us to discover optimized protocols for virtual screening management. The efficacy of elaborated roadmaps is demonstrated through the cost-effective molecular docking of 1.4 billion compounds. Savings of up to 10-fold in CPU time are demonstrated. These developments allowed us to evaluate ACE2/ACE selectivity in silico, which is a crucial checkpoint for developing chemical probes for ACE2

    Structure−Activity Relationships of Photoswitchable Diarylethene- Based β‑Hairpin Peptides as Membranolytic Antimicrobial and Anticancer Agents

    No full text
    Five series (28 structures) of photoswitchable β-hairpin peptides were synthesized based on the cyclic scaffold of the natural antibiotic gramicidin S. Cell-type selectivity was compared for all activated (diarylethene “ringopen”) and deactivated (“ring-closed”) forms in terms of antibacterial activity (MIC against Escherichia coli and Bacillus subtilis), anticancer activity (IC50 against HeLa cell line), and hemolytic cytotoxicity (HC50 against human erythrocytes). Correlations between the conformational plasticity of the peptides, their hydrophobicity, and their bioactivity were also analyzed. Considerable improvements in selectivity were achieved compared to the reference compound. We found a dissociation of the anticancer activity from hemolysis. Phototherapeutic indices (PTI), HC50(closed)/MIC(open) and HC50(closed)/IC50(open), were introduced for the peptides as safety criteria. The highest PTI for HeLa-selective toxicity were observed among analogues containing hydroxyleucine on the hydrophobic face. For one compound, high PTIs were demonstrated across a range of different cancer cell lines, including a doxorubicin-resistant on

    In Vitro Evaluation of In Silico Screening Approaches in Search for Selective ACE2 Binding Chemical Probes

    No full text
    New models for ACE2 receptor binding, based on QSAR and docking algorithms were developed, using XRD structural data and ChEMBL 26 database hits as training sets. The selectivity of the potential ACE2-binding ligands towards Neprilysin (NEP) and ACE was evaluated. The Enamine screening collection (3.2 million compounds) was virtually screened according to the above models, in order to find possible ACE2-chemical probes, useful for the study of SARS-CoV2-induced neurological disorders. An enzymology inhibition assay for ACE2 was optimized, and the combined diversified set of predicted selective ACE2-binding molecules from QSAR modeling, docking, and ultrafast docking was screened in vitro. The in vitro hits included two novel chemotypes suitable for further optimization

    Contributors

    No full text
    corecore