13 research outputs found

    Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease

    Get PDF
    The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays

    14-3-3 Proteins Interact with a Hybrid Prenyl-Phosphorylation Motif to Inhibit G Proteins

    Get PDF
    Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins

    Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease

    Get PDF
    The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC(50) values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC(50). Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC(50) in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement

    Cell-specific Bioorthogonal Tagging of Glycoproteins

    Get PDF
    Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function

    Notum deacylates octanoylated ghrelin

    No full text
    Objectives: The only proteins known to be modified by O-linked lipidation are Wnts and ghrelin, and enzymatic removal of this post-translational modification inhibits ligand activity. Indeed, the Wnt-deacylase activity of Notum is the basis of its ability to act as a feedback inhibitor of Wnt signalling. Whether Notum also deacylates ghrelin has not been determined. Methods: We used mass spectrometry to assay ghrelin deacylation by Notum and co-crystallisation to reveal enzyme–substrate interactions at the atomic level. CRISPR/Cas technology was used to tag endogenous Notum and assess its localisation in mice while liver-specific Notum knock-out mice allowed us to investigate the physiological role of Notum in modulating the level of ghrelin deacylation. Results: Mass spectrometry detected the removal of octanoyl from ghrelin by purified active Notum but not by an inactive mutant. The 2.2 Å resolution crystal structure of the Notum-ghrelin complex showed that the octanoyl lipid was accommodated in the hydrophobic pocket of the Notum. The knock-in allele expressing HA-tagged Notum revealed that Notum was produced in the liver and present in the bloodstream, albeit at a low level. Liver-specific inactivation of Notum in animals fed a high-fat diet led to a small but significant increase in acylated ghrelin in the circulation, while no such increase was seen in wild-type animals on the same diet. Conclusions: Overall, our data demonstrate that Notum can act as a ghrelin deacylase, and that this may be physiologically relevant under high-fat diet conditions. Our study therefore adds Notum to the list of enzymes, including butyrylcholinesterase and other carboxylesterases, that modulate the acylation state of ghrelin. The contribution of multiple enzymes could help tune the activity of this important hormone to a wide range of physiological conditions

    Metabolic Engineering Optimizes Bioorthogonal Glycan Labeling in Living Cells

    No full text
    Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. Comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology

    Clinical outcomes of COVID-19 in long-term care facilities for people with epilepsy

    No full text
    In this cohort study, we aim to compare outcomes from coronavirus disease 2019 (COVID-19) in people with severe epilepsy and other co-morbidities living in long-term care facilities which all implemented early preventative measures, but different levels of surveillance. During 25-week observation period (16 March–6 September 2020), we included 404 residents (118 children), and 1643 caregivers. We compare strategies for infection prevention, control, and containment, and related outcomes, across four UK long-term care facilities. Strategies included early on-site enhancement of preventative and infection control measures, early identification and isolation of symptomatic cases, contact tracing, mass surveillance of asymptomatic cases and contacts. We measured infection rate among vulnerable people living in the facilities and their caregivers, with asymptomatic and symptomatic cases, including fatality rate. We report 38 individuals (17 residents) who tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive, with outbreaks amongst residents in two facilities. At Chalfont Centre for Epilepsy (CCE), 10/98 residents tested positive: two symptomatic (one died), eight asymptomatic on weekly enhanced surveillance; 2/275 caregivers tested positive: one symptomatic, one asymptomatic. At St Elizabeth's (STE), 7/146 residents tested positive: four symptomatic (one died), one positive during hospital admission for symptoms unrelated to COVID-19, two asymptomatic on one-off testing of all 146 residents; 106/601 symptomatic caregivers were tested, 13 positive. In addition, during two cycles of systematically testing all asymptomatic carers, four tested positive. At The Meath (TM), 8/80 residents were symptomatic but none tested; 26/250 caregivers were tested, two positive. At Young Epilepsy (YE), 8/80 children were tested, all negative; 22/517 caregivers were tested, one positive. Infection outbreaks in long-term care facilities for vulnerable people with epilepsy can be quickly contained, but only if asymptomatic individuals are identified through enhanced surveillance at resident and caregiver level. We observed a low rate of morbidity and mortality, which confirmed that preventative measures with isolation of suspected and confirmed COVID-19 residents can reduce resident-to-resident and resident-to-caregiver transmission. Children and young adults appear to have lower infection rates. Even in people with epilepsy and multiple co-morbidities, we observed a high percentage of asymptomatic people suggesting that epilepsy-related factors (anti-seizure medications and seizures) do not necessarily lead to poor outcomes

    Notum deacylates Wnt proteins to suppress signalling activity

    No full text
    Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase
    corecore