37 research outputs found

    HIV-1 Dynamics in the Host Cell: A Review of Viral- and Host- Protein Interactions and Potential Therapeutic Targets for HIV-1 Infection

    Get PDF
    HIV-1, the causative agent of AIDS, is a sophisticated retrovirus that has both evolved to invade the complex human immune system and adapted to utilize the host machinery for its own propagation. A dynamic interaction between the virus and host systems can be observed at every step of the HIV-1 lifecycle. Host factors are involved not only in mounting antiviral responses, but are also hijacked by the virus to enhance viral replication. Host factors are necessary for viral replication during entry, reverse transcription, nuclear import, integration, transcription, nuclear export, translation, assembly, and budding. Recently, a new class of host factors, called “host restriction factors,” has been identified that prevent retroviral replication in a specific host cell environment and constitute an important part of intracellular innate immunity against the virus. These restriction factors act as barriers to retroviral replication at various stages within the infected cell. Nevertheless, the HIV-1 virus has learned to subvert these antiviral responses and successfully propagate within the permissive host environment. This review article describes the identification and mechanism of action of several pro- and anti-HIV-1 host factors. It is likely that we are only beginning to get a glimpse of an ongoing complex battle between HIV-1 and the host, the understanding of which should provide valuable information for the development of novel therapeutic strategies against HIV-1.

    In vitro activities of novel 4-HPR derivatives on a panel of rhabdoid and other tumor cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhabdoid tumors (RTs) are aggressive pediatric malignancies with poor prognosis. N-(4-hydroxy phenyl) retinamide (4-HPR or fenretinide) is a potential chemotherapeutic for RTs with activity correlated to its ability to down-modulate Cyclin D1. Previously, we synthesized novel halogen-substituted and peptidomimetic-derivatives of 4-HPR that retained activity in MON RT cells. Here we analyzed the effect of 4-HPR in inhibiting the growth of several RT, glioma, and breast cancer cell lines and tested their effect on cell cycle, apoptosis and Cyclin D1 expression.</p> <p>Methods</p> <p>Effect of compounds on RT cell cycle profiles, and cell death were assessed by MTS cell survival assays and FACS analysis. The effects of treatment on Cyclin D1 expression were determined by immunoblotting. The efficacy of these compounds on glioma and breast cancer cell lines was also determined using MTS assays.</p> <p>Results</p> <p>Low micromolar concentrations of 4-HPR derivatives inhibited cell survival of all RT cells tested. The 4-HPR derivatives altered RT cell cycle profiles and induced high levels of cell death that was correlated with their potency. ATRA exhibited high IC<sub>50 </sub>values in all cell lines tested and did not cause cell death. In MON RT cells, the iodo-substituted compounds were more active than 4-HPR in inducing cell cycle arrest and apoptosis. Additionally, the activity of the compounds correlated with their ability to down-modulate Cyclin D1: while active compounds reduced Cyclin D1 levels, inactive ATRA did not. In glioma and breast cancer cell lines, 4-HPR and 4-HPR derivatives showed variable efficacy.</p> <p>Conclusions</p> <p>Here we demonstrate, for the first time, that the inhibitory activities of novel halogen-substituted and peptidomimetic derivatives of 4-HPR are correlated to their ability to induce cell death and down-modulate Cyclin D1. These 4-HPR derivatives showed varied potencies in breast cancer and glioma cell lines. These data indicate that further studies are warranted on these derivatives of 4-HPR due to their low IC<sub>50</sub>s in RT cells. These derivatives are of general interest, as conjugation of halogen radioisotopes such as <sup>18</sup>F, <sup>124</sup>I, or <sup>131</sup>I to 4-HPR will allow us to combine chemotherapy and radiotherapy with a single drug, and to perform PET/SPECT imaging studies in the future.</p

    HIV-1 replication in cell lines harboring INI1/hSNF5 mutations

    Get PDF
    BACKGROUND: INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN). It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. RESULTS: We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. CONCLUSION: Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that presence of INI1 or some other host factor in virions and reverse transcription complexes may be important for early events of HIV-1 replication

    Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 integrase (IN) is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of <it>Saccharomyces cerevisiae</it>. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s) and/or motif(s) required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype.</p> <p>Results</p> <p>Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant.</p> <p>Conclusion</p> <p>Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of the IN-induced lethal phenotype in yeast.</p

    Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR

    Get PDF
    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications

    Recruitment of a SAP18-HDAC1 Complex into HIV-1 Virions and Its Requirement for Viral Replication

    Get PDF
    HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN–dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1H141A) was utilized. Incorporation of HDAC1H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1H141A decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity due to virion-associated HDAC1H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication

    Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Get PDF
    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers
    corecore