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Background: Ketoconazole binds to and antagonizes pregnane X receptor (PXR) activation.

Results: Yeast high throughput screens of PXR mutants define a unique region for ketoconazole binding.

Conclusion: Ketoconazole genetically interacts with specific PXR surface residues.

Significance: A yeast-based genetic method to discover novel nuclear receptor interactions with ligands that associate with

surface binding sites is suggested.

The pregnane X receptor (PXR) is a master regulator of xeno-
biotic metabolism, and its activity is critical toward under-
standing the pathophysiology of several diseases, including
inflammation, cancer, and steatosis. Previous studies have dem-
onstrated that ketoconazole binds to ligand-activated PXR and
antagonizes receptor control of gene expression. Structure-
function as well as computational docking analysis suggested a
putative binding region containing critical charge clamp resi-
dues GIn-272, and Phe-264 on the AF-2 surface of PXR. To
define the antagonist binding surface(s) of PXR, we developed a
novel assay to identify key amino acid residues on PXR based on
a yeast two-hybrid screen that examined mutant forms of PXR.
This screen identified multiple “gain-of-function” mutants that
were “resistant” to the PXR antagonist effects of ketoconazole.
We then compared our screen results identifying key PXR resi-
dues to those predicted by computational methods. Of 15 poten-
tial or putative binding residues based on docking, we identified
three residues in the yeast screen that were then systematically
verified to functionally interact with ketoconazole using mam-
malian assays. Among the residues confirmed by our study was
Ser-208, which is on the opposite side of the protein from the
AF-2 region critical for receptor regulation. The identification
of new locations for antagonist binding on the surface or buried
in PXR indicates novel aspects to the mechanism of receptor
antagonism. These results significantly expand our understand-
ing of antagonist binding sites on the surface of PXR and suggest
new avenues to regulate this receptor for clinical applications.
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The pregnane X receptor (PXR),® is a master regulator of
xenobiotic metabolism. Because its original cloning and char-
acterization (1, 2), PXR has been implicated in a host of patho-
physiologic consequences in vivo (e.g. cancer drug resistance
and potentiation of malignancy, clinically important adverse
drug interactions, development of hypertriglyceridemia and
nonalcoholic hepatic steatosis, inflammation and accentuation
of drug toxicities) (for review, see Refs. 3 and 4). Thus, although
there has been significant progress in the identification of ago-
nist ligands for PXR and their structure activity relationships
(5), there have been limited descriptions of drug-like PXR
antagonists (6 —15). Such small molecule antagonists need to be
devoid of cellular toxicity, with limited off-target effects if they
are to have potential for clinical application (3, 16).

Although natural ligands possessing PXR antagonist proper-
ties exist (e.g. sulforaphane, ketoconazole, ET743) (8, 10, 15), it
remains unclear how and where the antagonists bind to and
exert actions on PXR. The critical question is whether there are
one or more “antagonist-binding pockets” capable of binding
ligands outside the ligand binding pocket (11, 12). Takeshita et
al. (17) first described the antagonist effect of ketoconazole on
ligand-activated PXR. Although ketoconazole is a weak activa-
tor of PXR, in the presence of a strong agonist ligand (e.g. rifam-
picin) it also acts as a moderate antagonist (8). Our laboratory
specifically demonstrated that in the human PXR scintillation
proximity assay, the IC;, for ketoconazole was 74.4 um (K, ~
55.3 um) (8). These values indicated that at biologically effective
concentrations ranging from 6 to 25 uu, it was unlikely that
ketoconazole could effectively compete with ligands (e.g. rifam-
picin) for binding to the ligand binding pocket of PXR. Hence,
these results suggested that ketoconazole might act outside this
pocket or in another domain or site on PXR. One unique site for
interaction was the surface formed upon PXR activation (i.e. the
AF2 interaction surface) that could directly or indirectly influ-
ence surface interactions with co-activators (e.g. SRC-1 (steroid

3 The abbreviations used are: PXR, pregnane X receptor; SRC-1, steroid recep-
tor coactivator 1; LBD, ligand binding domain; MIC, minimum inhibitory
concentration; Rh123, rhodamine 123; AR, androgen receptor; NRs,
nuclear receptors; ER, estrogen receptor.
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receptor coactivator 1)). Preliminary docking studies suggested
that the AF2 interaction surface could potentially bind to keto-
conazole and other non-azole PXR antagonists, and a ligand
based pharmacophore suggested these molecules may map to
similar features (11, 12). These combined studies defined two
pockets and potential AF2 surface residues that could bind
ketoconazole.

Based on these observations and the fact that mutations out-
side the PXR ligand binding domain (LBD) can result in PXR
unresponsive to ketoconazole antagonism (18), we developed a
novel high throughput yeast based two-hybrid assay to study
ketoconazole binding residues on PXR (19, 20). We specifically
focused on this genetic approach as isolation and purification of
full-length and/or mutant PXR has been extremely difficult and
this limitation would hamper a structural approach to solving
this question. Single mutations on PXR, especially on the AF2
surface defined by hydrophobic groove formed by « helices 3, 4,
5,and 12 directly above the ligand binding pocket on the surface
of the receptor, invariably result in inactive mutants. Based on
crystal structure considerations of stabilization of aAF (H12),
we embarked on creating mutational libraries that would res-
cue the effect of single mutations in this region. Indeed, we have
shown that rescue or gain-of-function second mutations can be
made for the study of the ketoconazole binding surface on PXR
(18). On this principle, we adopted and developed a high
throughput yeast screen of PXR mutants interacting with its
coactivator, SRC-1 (Supplemental Fig. S1). In this screen, which
was adapted for a compound known to be cytotoxic to yeast, we
were able to demonstrate key mutations on PXR that were
enriched in clones unable to bind to ketoconazole. We con-
clude that the original residues are direct interaction residues
with ketoconazole and are important for the inhibitory actions
of the drug on PXR. Furthermore, we confirmed these findings
in mammalian systems. Thus, we highlight a novel method
toward detecting residues important for ligand action on
nuclear receptor surfaces.

EXPERIMENTAL PROCEDURES

Cell Lines, Materials, and Reagents—Cell culture media and
PCR reagents were purchased from Invitrogen unless indicated
otherwise. The Saccharomyces cerevisiae strain was CTY10-5d
(MATa ade2 trpl-901 leu2-3,112 his3-200 gald™ gal80—
URA3::lexA-lacZ), which contains an integrated GALI-lacZ
gene with a lexA operator (21). Escherichia coli XL-1 Blue (Agi-
lent Technologies, Santa Clara, CA) was used to amplify the
mutant cDNA library. The cell line CV-1 was from the Ameri-
can Type Culture Collection (ATCC, Manassas, VA) and cul-
tured according to ATCC recommendations. Charcoal
adsorbed fetal bovine serum, DMSO, rifampicin, ketoconazole,
and 5-bromo-4-chloro-3-indoyl B-p-galactosidase (X-gal) were
from Sigma; [*H]ketoconazole 10 Ci/ml (ART0794) was
obtained from American Radiolabeled Chemicals, Inc. (St
Louis, MO). Antibodies for immunoblots were obtained as fol-
lows: PXR (H-160), LexA (D-19), SRC-1 (M-20), and Gal4AD
(C-10) were from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA). E. coli BL21 was used to express glutathione S-transferase
fusion protein (GST protein). pSG5-PXR, pGL3-cyp3A4-luc,
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and other plasmids used for PXR transactivation and mamma-
lian two-hybrid assays have been described elsewhere (8, 9, 35).

Construction of Ketoconazole-resistant Yeast—ERG11 (sterol
14a-demethylase) is an established target for ketoconazole.
Indeed, loss of ERG11 (by homologous recombination or devel-
opment of mutations) results in nonviable yeast. These effects
may be rescued by concomitant presence of suppressor muta-
tion in ERG3 (sterol A>°-desaturase) (22). To obtain viable
yeast cells resistant to ketoconazole that did not carry trans-
porter alterations as a cause of azole resistance (23-25), we
developed novel strains of CTY10-5d yeast by first deleting
ERG3 (erg3A) and then introducing an additional deletion in
ERG11 (erg3A/ergl1A) genes by homologous recombination
(supplemental Fig. S2 and Experimental Procedures) (26).

Drug Sensitivity (Spot) Assay—Sensitivity to ketoconazole
was tested by spotting serial dilutions of yeast culture onto
plates containing different concentrations of ketoconazole (27,
28). The transformants were pre-grown in yeast extract/agar/
peptone/dextrose (YAPD) broth to late-exponential phase and
then re-inoculated into fresh medium to a cell concentration of
5 X 10° cells/ml. The optical density was measured at 600 nm
(Ago0), and the number of cells/ml of culture was determined
after the yeast was incubated for 6 -7 h at 30 °C. Serial dilutions
in sterile water containing 107, 10°, 10°, and 10* cells/ml were
spotted (2 ul of each dilution per plate) onto YAPD solid plates
containing either solvent or ketoconazole. The plates were
incubated at 30 °C for 48 h before minimum inhibitory concen-
tration (MIC) determination.

MIC Estimations—The MIC of ketoconazole was defined as
the minimum inhibitory concentration of ketoconazole at
which no growth was observed when 2 ul of the second dilution
(i.e. 10 cells/ml) of the culture was spotted onto plates contain-
ing ketoconazole (28).

Ketoconazole Accumulation by S. cerevisiae—The net rate
of ketoconazole accumulation by early exponential-phase
S. cerevisiae cells was measured as described previously for flu-
conazole (29). Briefly, in this filter-based assay, yeast cells were
grown to a density of 107 cells/ml, centrifuged, and resus-
pended in PBS. [*H]Ketoconazole and unlabeled ketoconazole
were added to cells to give a final ketoconazole concentration
and specific radioactivity of 100 nm and 7.4 GBq/ml, respec-
tively. The cells were incubated at 30 °C with shaking at 170
rpm. At various times, triplicate samples of 3 ml each were
removed and filtered in a Millipore vacuum manifold with
Whatman GF/C filters (Sigma) that had been presoaked in 100
mu unlabeled (cold) ketoconazole. The filters were washed 4
times with 4 ml of PBS containing 100 mMm unlabeled ketocona-
zole and were transferred to scintillation vials. The filters were
dried at 37 °C for 60 min before scintillation fluid (10 ml) was
added. The vials were capped and left at room temperature
overnight before measuring radioactivity in a Packard liquid
scintillation analyzer, Tri-CARB 2900TR, Packard (Meriden,
CT). Notably, in this assay ketoconazole accumulation was
shown to reach equilibrium by 60 min (data not shown), and
cells were, therefore, analyzed before this time period. The
details of the assay have been described previously (27). Con-
trols included heat-killed yeast cells and blank filters to deter-
mine and subtract out nonspecific drug binding to cells and
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filters that did not exceed 10% of input radioactivity. Accumu-
lated [*H]ketoconazole picomoles were calculated by dividing
dpm by specific activity (1 wCi = 2.2 X 10° dpm).

Drug Binding and Cold Competition Assay—The ketocona-
zole binding experiments were performed as described previ-
ously (23). Recombinant GST fusion proteins were expressed in
E. coli and purified using glutathione-Sepharose beads. Beads
with GST proteins (10 ng) were incubated with 0.2 mm radio-
labeled ketoconazole ([*H]ketoconazole, specific radioactivity
10 Ci/mmol) in drug binding buffer (10 mm K,HPO,, 10 mm
KH,PO,, pH 7.0,2 mmM EDTA, 50 mm NaCl, 1 mm DTT, 0.5 mu
CHAPS, 10% glycerol, and protease inhibitors) at 4 °C for 3 h.
For cold competition, an unlabeled 1000-fold (1000X) excess of
ketoconazole was added. The beads were then washed briefly in
500 ul of ice-cold drug binding buffer three times. The washed
beads were resuspended in 100 ul of drug binding buffer and
added to 5 ml of scintillation fluid (Fisher). After 10 min, scin-
tillation counting was performed using a liquid scintillation
analyzer, Tri-CARB 2900TR. All experiments were performed
with at least three replicates.

Rh123 (Rhodamine 123) Efflux Assay—To determine broadly
whether efflux pump activity was altered in genetically modi-
fied yeast, Rh123 retention was assayed. Briefly, ERG3/ERG11,
erg3A, erg3A/erglIA yeast cells from YAPD cultures in the
exponential growth phase (ODg,, ~ 0.5) were collected after
centrifugation (3000 X g, 5 min at 20 °C) and washed 3 times
with water. The cells were resuspended at a concentration of
0.5 X 10°to0 1.0 X 107 cells/mlin PBS and incubated with 10 um
Rh123 at 37 °C for 30/60 min and centrifuged at 12,000 X gin a
microcentrifuge. The resulting pellet was washed twice, resus-
pended in 200 ul of PBS, and transferred to a 96-well plate. The
fluorescence of the reaction mixture was recorded with a spec-
trofluorimeter (excitation and emission wavelengths of 485 and
538 nm, respectively). To determine whether cells assayed for
Rh123 retention assay were metabolically active, we measured
their metabolic activities using the Live/Dead kit based on
FUN-1  (2-chloro-4-[2,3-dihydro-3-methyl-{benzo-1,3-thia-
zol-2-yl}-methylidene]-1-phenylquinolinium iodide; Molecu-
lar Probes Inc., Eugene, OR) by following the manufacturer’s
instructions. FUN-1 is a membrane-permeant nucleic acid
binding asymmetric halogenated cyanine dye that gives rise to
cylindrical intravacuolar structures in metabolically active
yeast cells. ERG3/ERG11, erg3A, erg3A/ergl 1A cells (107 cells/
ml) were incubated with FUN-1 for 45 min at 37 °C, and fluo-
rescence was estimated with a spectrofluorimeter (excitation
and emission wavelengths, 485 and 585 nm, respectively).
Rh123 retention by the cells was expressed as fluorescence
accumulated per unit of metabolic activity (30, 31).

Yeast Growth Rate—Briefly, yeast cell (ERG3/ERG11, erg3A,
erg3A/ergl1A, blank) concentrations were measured by
OD¢gp nm €very hour over a period of 24 h (microplate reader,
Biotech Synergy, San Diego, CA). The data were analyzed
according to published methods with slight modifications (32,
33). Briefly, we used Prism 4.0a for Macintosh (2003) to analyze
natural log transformed ODgg .., ratios (D at time ¢ (OD)
divided by initial Dy, (ODi) values, denoted as In(OD/ODi)) as
a function of time (h). Subsequently, we performed a nonlinear
curve fit using the pre-specified “sigmoidal dose-response
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(variable slope)” equation with initial x and y constraints equal-
ing zero. The maximal growth rate (u,,,) is defined as the max-
imal slope of the Ln curve, and the cell doubling time at u,,, is
defined by the equation In 2/um. A, lag-time, was defined as the
value corresponding to the intersection of the maximal slope of
the In curve with the x axis (SigmaPlot 9.0). The same experi-
ment was repeated using the exact protocol specified in the
prior paper in which yeast concentrations were measured by
OD¢g0 nm €very 10 min over a period of 48 h (32). The OD plots
show similar trends (supplemental Fig. S3).

Construction of PXR and SRC-1 Fusions in Yeast Vectors—
Human PXR LBD (107-434 amino acids) was obtained by PCR
amplification of pSG5-hPXR plasmid (8) using the primer pairs:
forward, 5'-ACC GGATCCCGATGAAGAAGGAGATGAT-
CATGTCC-3', and reverse, 5'-AGAGTCGACTCAGCTACC-
TGTGATGCC-3'. The PCR product was directionally ligated
to pSH2-1 at BamHI/Sall sites within the vector (pSH-PXR).
Human SRC-1 full-length (1-1401 amino acids) was obtained
by PCR amplification of pCMX-SRC1 plasmid (provided by Dr.
Michael G. Rosenfeld, UCLA, Los Angeles, CA) using the
primer pairs: forward, 5'-TATAGC GGCCGCATGAGTGGC-
CTCGGGGACAGTTCATCC-3', and reverse, 5'-GCGGTC-
GACTTATTCAGTCAGTAGCTG-3'. The PCR product was
directionally ligated to pGADNOT at Notl/Sall sites of vector
(pPGADNOT-SRC-1). A reverse two-hybrid pair was also con-
structed: pSH-SRC-1 and pGADNOT-PXR. Primers for PCR
amplification of full-length SRC-1 included: forward, 5'-ATA-
TGTCGACAAATGAGTGGCCTCGGGGACAGTTCATCC-
3', and reverse, 5'-GCGGTCGACTTATTCAGTCAGT-
AGCTG-3'. The PCR product was ligated to pSH2-1 within a
Sall site present in the vector. Primers for PCR amplification of
PXR LBD included: forward, 5'-AAGCGGCCGCATGAAGA-
AGGAGATGATCATGTCCGACGAG-3', and reverse, 5'-A-
GAGTCGACTCAGCTACCTGTGATGCC-3'. The PCR
product was directionally ligated to pGADNOT at Notl/Sall
sites of vector. The authenticity of all derived plasmids were
verified by sequencing.

Construction of PXR Mutant Library for Reverse Two-hybrid
Screening—The Genemorph II random mutagenesis kit from
Agilent Technologies was used to construct PXR mutants for
the yeast two-hybrid assay. This kit is based on a novel error-
prone PCR enzyme mixture (Mutazyme I polymerase + Taq
polymerase) that ensures a “less” biased mutagenesis profile
that balances mutations rates of A and Ts versus G and Cs. We
used a titrated amount of template plasmid DNA (750 -1000
ng) and 30 PCR reaction cycles to ~0—4.5 mutations per kb of
DNA. Primers for error-prone PCR included forward, 5'- ACC-
GGATCCCGATGAAGAAGGAGATGATCATGTCC-3’, and
reverse, 5'-AGAGTCGACTCAGCTACCTGTGATGCC-3'".
The PCR products were shotgun-cloned into BamHI and Sall
sites within the pSH2-1 vector. The transformants were pooled
as a library, and plasmids were purified using the MaxiPrep kit
(Qiagen).

Plasmids Construction and Mutagenesis—pSG5-PXR, VP16-
PXR, and GST-PXR LBD expression vector pGEX-6P1-PXR
used in this paper were described previously (8). Site-di-
rected mutagenesis of the hPXR constructs was performed
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using the QuikChange Site-Directed Mutagenesis kit (Agi-
lent Technologies).

Yeast Two-hybrid Assays—Yeast Strain erg3A/erglIA was
co-transformed with 1 ug of either pSH-PXR or pooled pSH-
PXR mutant library and 1 ug of pGADNOT-SRC-1 or 1 ug
each of pPGADNOT-PXR and pSH-SRC-1, respectively. Trans-
formed yeast was plated on Leu-/His-YPD selective agar plates
with or without ketoconazole (25 um). X-gal colony filter lift
assays and B-galactosidase assays were performed (see below),
and select colonies were picked for plasmid isolation using
Zymoprep Yeast Plasmid Miniprep Kit II (Zymo Research,
Irvine, CA). Plasmid DNAs were then amplified by PCR using
primer pair forward, 5'-ACCGGATCCCGATGAAGAAGGA-
GATGATCATGTCC-3', and reverse, 5'-AGAGTCGACTCA-
GCTACCTGTGATGCC-3". Plasmid DNA and PCR products
were sequenced to identify the mutations.

X-Gal Filter Assay and Liquid B-Gal Assay—X-gal assays
were performed as previously described (9, 21). Briefly, appro-
priately sized circular nitrocellulose membranes (Schleicher &
Schuell) were overlaid on yeast colonies within plates and
allowed to soak completely. After complete soaking, the nitro-
cellulose was lifted off plates carefully to avoid smearing the
colonies and placed in —80 °C for 15 min. The nitrocellulose
was subsequently placed at room temperature for 10 min. The
nitrocellulose was placed cell-side up on the two layers of
Whatman No. 3MM filter paper that was soaked with ~3 ml of
X-gal solution (20 mg/ml) in a Petri dish. The liquid 8-gal assay
was performed from three independent transformants by using
O-nitrophenyl-B-p-galactopyranoside; Sigma) as described by
Vojtek, A. et al. (34).

Mammalian Transactivation and Two-hybrid Assays—
Transactivation assays were performed in CV-1 cells. Cells
were transfected with various reporters, the expression vectors,
and SV40-Renilla plasmid was cotransfected as transfection
control. For mammalian two-hybrid assays, the expression
plasmids Gal4DB-SRC-1-RID (receptor interaction domain) or
Gal4DB-SMRT-1-RID and VP16-hPXR were cotransfected
with Tk-MH100 X 4-Luc reporter plasmid and SV40-Renilla
control vector in CV-1 cells. Twenty-four hours after transfec-
tion, cells were treated with drugs and harvested 48 h. The
luciferase activity was detected using the dual-luciferase
reporter assay system and 20/20 Luminometer from Promega,
Madison, WI (8, 35). Statistical analysis was performed with
Prism (Version 4.0) using the nonparametric Student’s ¢ test.
Nonlinear regression (curve fit) analysis was performed using
the Sigmoidal dose-response (variable slope) equation.

Protein Pulldown Assays—The GST-SRC-1-RID fusion pro-
tein was expressed in E. coli BL21 cells and purified using glu-
tathione-Sepharose (GE Healthcare) as described previously (8,
35). Verification of intact protein synthesis was obtained on
12% SDS-PAGE gels. Full-length human PXR in pSG5 vector
was translated i vitro in the presence of [**S]methionine using
the TNT-coupled reticulocyte lysate system (Promega) accord-
ing to the manufacturer’s instructions. Purified GST fusion
protein (5 ug) was incubated with 5 ul of in vitro translated
%>S-labeled protein with moderate shaking at 4 °C overnight in
NETN (20 mmol/liter Tris, pH 8.0, 100 mmol/liter NaCl, 1.0
mmol/liter EDTA, 0.5% Nonidet P-40) and in the presence of
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0.2% DMSO, 10 um rifampicin, or 10 uM rifampicin plus 25 um
ketoconazole. GST was used as a negative control. The bound
protein was washed 3 times with NETN, and the beads were
collected by centrifugation at 3000 rpm for 5 min. The bound
protein was eluted into SDS sample buffer and subjected to 12%
SDS-PAGE, and the gel was exposed to phosphorimaging.

Immunoblot—Yeast cells were resuspended in distilled water
containing 0.2 M NaOH and incubated for 5 min at room tem-
perature, The cells were pelleted and resuspended in SDS sam-
ple buffer. After boiling and brief centrifugation, ~6 ul of
supernatant was typically loaded per lane of 10% SDS mini gel.
At the completion of electrophoresis, proteins were transferred
to nitrocellulose membranes (Protran BA79, Whatman). West-
ern blotting was performed using anti-PXR antibody (H-160),
anti-LexA antibody (p-19), anti-SRC-1 antibody (M-20), and
anti-Gal4-AD antibody (C-10) from Santa Cruz Biotechnology.

Docking—The INRL structure was downloaded from the
Protein Data Bank, and protein was prepared using the “pre-
pare protein” protocol in Discovery Studio 3.5 (Accelrys, San
Diego, CA) for rigid docking as described previously (11, 12).
Ketoconazole was prepared using the “prepare ligands” proto-
col. A binding site sphere of 14 A diameter was created using
Ser-208 as the center, and then ketoconazole was docked
into the INRL structure using LibDock (36) with Fast confor-
mation generation, energy threshold 20 kcal/mol, steepest
descent minimization, CHARMm forcefield. Ligand conforma-
tions were then manually assessed where the higher the Lig-
DockScore, the higher the predicted affinity for the protein.
Two-dimensional interaction maps were generated to show
proposed ligand-protein interactions.

RESULTS

The erg3A/ergl 1A Yeast Strain Is Resistant to Ketoconazole—
The growth characteristics of ERG3/ERGL11, erg3A, and erg3A/
erglIA indicate that all these cell types have nearly similar
growth characteristics (cell doubling time ~2.7, 2.8, and 2.4 h,
lagtime (A) ~1.4,2.1,and 2.6 h, respectively) (supplemental Fig.
S3). erg3A yeast cells are more sensitive to the cytotoxic effects
of ketoconazole than the ERG3/ERGI1I, yet erg3A/ergllA
remains resistant to ketoconazole at concentrations exceeding
41 um (Fig. 1A). ERG3/ERG11 is sensitive to ketoconazole (MIC
~9 uMm); however, erg3A yeast are more sensitive to ketocona-
zole (MIC ~6 um), whereas erg3A/ergl 1A yeast (MIC ~>41
M, data not shown) are relatively more resistant to ketocona-
zole when compared with ERG3/ERGI1 yeast (-fold resistant
~>5). Because the MDR (multidrug resistance) efflux pump,
Pdr5p, and other transporters are known to mediate azole
resistance in yeast (24, 25, 28), we used Rh123 as a known sub-
strate of Pdr5p (38, 39) to determine energy-dependent trans-
port differences between ERG3/ERGII, erg3A, and erg3A/
ergl 1A yeast strains. Our results indicated that at ODg4, ~ 0.5,
the retention of Rh123 by metabolically active yeast was signif-
icantly higher at 30 min for the erg3A/ergl 1A compared with
either ERG3/ERGI1 or erg3A strain; however, this difference
was not observed at 60 min (Fig. 1B). Next, we tested whether
there were differences in the net accumulation (uptake) of
[*H]ketoconazole (with cells analyzed at 30 and 60 min) in our
yeast strains. At 30 and 60 min, the amount of [’H]ketoconazole
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FIGURE 1.erg3A/erg11A yeast strain is resistant to ketoconazole. A, serial dilution (cells/ml) spotting of ERG3/ERG11, erg3A, or erg3A/erg11A yeast on YAPD
solid plates containing indicated concentration (um) of ketoconazole is shown. B, Rh123 retention was measured at 30 min and 60 min and expressed as
fluorescence accumulated per unit of metabolic (live cell) activity. C, ketoconazole accumulation in yeast was measured using [*Hlketoconazole-specific
activity detected at 30 and 60 min. Specific activity was converted to pmol and normalized to mg dry filter weight as previously published (28). Drug vehicle
(control), 0.2% DMSO. Histograms represent the mean = S.D. of three independent experiments each performed in triplicate. Rh, rhodamine.

retained in erg3A/ergl 1A was higher than ERG3/ERG11 yeast
(Fig. 1C). These studies indicate that the mutant yeast strain is
amenable for yeast two-hybrid analysis using ketoconazole.
Ketoconazole Disrupts Wild-type But Not Mutant PXR Asso-
ciation with Coactivator, SRC-1—To determine whether the
erg3A/ergl 1A was suitable for use in yeast two-hybrid screens,
we performed an assay in this strain to see if we could detect a
colorimetric readout of the association of PXR and steroid
receptor coactivator-1 (SRC-1) as previously published using
the ERG3/ERG11 strain (9). Because yeast has significant sterol
production, it has previously been shown that lacZ expression
in yeast can be induced without the need for additional exoge-
nous ligand (9, 40). We found that lacZ expression (blue colo-
nies) was also induced in the erg3A/erglIA yeast strain trans-
formed with PXR and SRC-1; however, there was no induction
of LacZ expression (white colonies) in yeast transformed with
empty vectors, PXR, or SRC-1 individually (Fig. 2A4). From our
previous work with ketoconazole and PXR antagonism in
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mammalian cells, in the presence of a strong PXR agonist ligand
we observed PXR antagonism at ketoconazole concentrations
of 10 um and above (8). Therefore, for subsequent studies in
yeast, we arbitrarily chose a concentration 2.5X the minimal
concentration required to antagonize ligand-activated PXR. To
determine whether ketoconazole (25 um) disrupted PXR and
SRC-1 interaction in erg3A/erglIA yeast, replica plates con-
taining ketoconazole were soaked with nitrocellulose, and
X-gal filter lift and B-galactosidase liquid assays were per-
formed. We show that ketoconazole disrupts PXR and SRC-1
interactions in yeast as all the colonies from the replica filter
were now white (which was also shown by the significantly
reduced B-galactosidase activity by liquid enzymatic assays)
(Fig. 2B). We previously showed in mammalian assays that the
PXR mutant (T248E/K277Q) can be activated by a strong
ligand (e.g. rifampicin) but is immune to the antagonistic effects
of ketoconazole (18). Similarly, when we engineered the PXR
double mutant (T248E/K277Q) in the yeast plasmid and then
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performed yeast transformations with SRC-1, we were able to
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show that the colonies exposed to ketoconazole still retain LacZ
expression (Fig. 2C). The transformed yeast strains have been
shown to express PXR, LexA, and SRC-1 protein in the pres-
ence or absence of ketoconazole (Fig. 2D).

Because SRC-1 is a coactivator (and was cloned into the
pGADNot vector), we wanted to test whether SRC-1 could acti-
vate lacZ expression when cloned into the pSH vector system
and whether this would change the activation profile and/or
affect the leakiness of the yeast two-hybrid assay. Using our
redesigned plasmids we performed two-hybrid assays in erg3A/
ergl IA yeast. As before, we show that lacZ expression (blue
colonies) was also induced in erg3A/erglIA yeast strain trans-
formed with PXR and SRC-1; however, there was no induction
of LacZ expression (white colonies) in yeast transformed with
empty vectors, PXR, or SRC-1 individually (Fig. 2E). In the pres-
ence of ketoconazole, the PXR and SRC-1 interactions in yeast
are disrupted as all the colonies from the replica filter are now
white. Similarly, when we engineer the PXR double mutant
(T248E/K277Q) in this yeast plasmid and then perform erg3A/
ergl 1A yeast transformations with SRC-1, we are able to show
that the colonies exposed to ketoconazole still retain lacZ
expression (Fig. 2F). These results suggest that for the purposes
of yeast screening of PXR and SRC-1 interactions, there is no
advantage for use of a specific cloning vector system for bait or
prey. Thus, further yeast two-hybrid studies were all performed
using the plasmids pSH-PXR and pGADNot-SRC-1.

High-throughput PXR Mutation Screen Reveals Specific Keto-
conazole Binding Residues on PXR—The yeast screen was per-
formed using a pooled PXR mutant library generated by ran-
dom mutagenesis. As represented in Fig. 3, the yeast
transformants on the no-drug (—ketoconazole)-containing
plates were on average represented as blue colonies (n = 81
blue/94 total screened; ~86%) and white colonies (n = 13
white/94 total screened; ~14%). On any given screen the trans-
formants on ketoconazole containing (+ketoconazole) plates
were represented as blue colonies (n = 16 blue/93 total
screened; ~17%) and white colonies (n = 77 white/93 total
screened; ~83%). It was estimated that ~81% of blue colonies
on ketoconazole minus plates transitioned to white colonies on
ketoconazole plus plates. Thus, approximately ~17% of blue
colonies in the ketoconazole minus plate were still represented
as blue colonies on ketoconazole plus plates (Fig. 3). These
results indicate that the mutator frequency was ideal for gener-
ation of sufficient numbers of PXR mutants that could be acti-
vated under basal conditions. Furthermore, the presence of
~17% ketoconazole minus blue colonies on ketoconazole plus
plates suggests that it would be feasible to assess for ketocona-
zole binding residues on PXR.
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FIGURE 3. High-throughput PXR mutation yeast screen. pSH-PXR mutant
cDNA library and pGADNOT-SRC-1 co-transformed into erg3A/erg11A strain
were replica plated in vehicle (0.2% DMSO) (A)- or ketoconazole (25 um)
(B)-containing plates. An X-gal assay was then performed. The grid shows the
method used for colony counts and sampling of the corresponding blue/
white colonies in the two plates.

Next, we performed 21 yeast transformations and screens,
and with each round of yeast transformations and plating we
picked (m = 10-25 colonies: 1025 blue, 10-25 white) from
the ketoconazole plus plates for plasmid isolation, PCR ampli-
fication, and sequencing. In all, we picked (n = 284 colonies:
108 blue, 176 white) from the ketoconazole plus plates for plas-
mid isolation, amplification, and sequencing. Note that for all
plasmid amplification steps, we had a control plasmid of known
sequence (pSG5-PXR) that was also amplified to detect
whether our amplification step caused additional mutations.
None were detected (data not shown). The following mutations
were observed as they occurred two or more times on the cor-
responding blue colony screen: S208W (~36%), Q272H

FIGURE 2. Ketoconazole disrupts wild-type but not mutant PXR association with coactivator, SRC-1. A, erg3A/erg11A strain was transformed with the
indicated plasmids, and plated colonies were subjected to X-gal lift assay (left panel) and B-gal liquid assay (right panel). Lane 1, pSH empty vector + pGADNOT
empty vector; lane 2, pSH-PXR + pGADNOT empty vector; lane 3, pSH empty vector + pGADNOT-SRC-1; lane 4, pSH-PXR + pGADNOT-SRC-1; lane 5, pSH-
INI-1 + pGADNOT-c-Myc (positive control). B, shown is a erg3A/erg11A colony replica in plates containing vehicle (0.2% DMSO; lane 1) or ketoconazole (25 um;
lane 2). An X-gal lift assay (left panel) and B-gal liquid assay (right panel) were then performed. C, erg3A/erg11A colony replica in plates containing vehicle (lane
1and 3) or ketoconazole (25 uM; lanes 2 and 4) is shown. T248E/K277Q indicates specific PXR mutant. D, shown are immunoblots of specific proteins as indicated
from yeast colonies (lanes 7 and 2, pSH-PXR + pGADNOT-SRC-1; lanes 3 and 4,pSH-PXR T248E/K277Q mutant + pGADNOT-SRC-1) randomly picked from plates
containing vehicle (lanes 7 and 3) or ketoconazole (lanes 2 and 4). E, erg3A/erg11A strain was transformed with the indicated plasmids, and plated colonies were
subjected to an X-gal lift assay (left panel) and B-gal liquid assay (right panel). Lane 1, pSH empty vector + pGADNOT empty vector; lane 2, pSH-SRC-1 +
pGADNOT empty vector; lane 3, pSH empty vector + pGADNOT-PXR; lane 4, pSH-SRC-1 + pGADNOT-PXR; lane 5, pSH-INI-1 + pGADNOT-c-Myc (positive
control). F, procedures were as in Band C. erg3A/erg11A colony replica in plates containing vehicle (lane 1) or ketoconazole (25 um; lane 2) are shown. X-gal lift
assay (left panel) and B-gal liquid assay (right panel) were then performed.
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TABLE 1
Characterization summary of PXR (blue colony) mutants in vitro and in vivo
Keto, ketoconazole; +, no interaction with ketoconazole; —, inhibitory interaction with ketoconazole; Binding, [*H]ketoconazole binds PXR; No binding, no evidence for
[*H]ketoconazole binding PXR. B-Gal liquid assays indicated using the mean units.
Mammalian Mammalian X-Gal filter B-Galliquid | GST pull-down | [3H] ketoconazole bindin
PXR Transactivation| Two-hybrid 1 P g
proteins
X
No Keto | Keto |No Keto | Keto ([No Keto | Keto [No Keto | Keto |No Keto | Keto No 1000 Cold
Cold Keto Keto
S208W + + + + + + 93.64" | 7531 | + + No binding | No binding
Q272H + + + + + + 64.76* | 56.37* + + No binding | No binding
F264T + + + + + + 79.44% | 68.08* + + No binding | No binding
F264W + + + + + + 85.93*% | 77.36* + + No binding | No binding
Wild Type| + - + - + - 92.25 3.35 + - Binding No binding
*P>0.1.
TABLE 2

Characterization summary of PXR (white colony) mutants in vitro and in vivo
Keto, ketoconazole; +, no interaction with ketoconazole; —, inhibitory interaction with ketoconazole; Binding, [*H]ketoconazole binds PXR; No binding, no evidence for

[*H]ketoconazole binding PXR. B-Gal liquid assay indicated using the mean units.

PXR 1,::{:::::33;1011 2/[;:_1:; 2;::::; X-Gal filter B -Gal liquid | GST pull-down | [3H] ketoconazole binding
profeins No Keto | Keto [No Keto | Keto [No Keto | Keto [No Keto | Keto |No Keto | Keto ColdN(I)(e to 100;?;501(1
E270W + - + - + - | 8713 |6.92 + - Binding | No binding
E282Q + - + - + - | 72.89 7.06 + - Binding | No binding
K259E + - + - + - |60.94 |5 77 + - Binding | No binding
E270G + - + - + - |81.11 |558 + - Binding | No binding
L424D + B + B + © 166.43 |3.79 + B Binding | No binding
Eig:{)/ ; ; ; I - | 413 | 534 - - | Binding | No binding

Wild Type + - + - + - 19225 |3.35 + - Binding | No binding

(~16%), F264T (~30%), and F264W (~18%) (Table 1). There
were several mutations that were detected once in the blue
colonies; however, on closer inspection when the yeast assays
were repeated with measurements using the liquid 3-gal assay,
these all were indeed white colonies (data not shown). Addi-
tionally, several weakly positive blue colonies in the ketocona-
zole plus plates revealed mutations that were then studied in
mammalian systems (transcription and mammalian two-hy-
brid assays) and we found to still be inhibited by ketoconazole
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(Table 2). The following mutations were observed as they
occurred two or more times on the white colony screen (blue in
ketoconazole minus and white in ketoconazole plus plates):
E270W (8.7%), E282Q (2.4%), K259E (2.4%), E270G (1.6%), and
L424D (2.4%) (Table 2). Indeed, these mutants could still be
inhibited by ketoconazole when studied in mammalian systems
(transcription and mammalian two-hybrid assays). Finally, on a
screen of 50 white colonies from both the ketoconazole minus
and plus plates, the following mutations were observed as they
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occurred two or more times: R287K (10%), P268H (6%),
F264T/L424D (6%). Indeed, these mutants were also found
to be inactive to PXR ligand, rifampicin, using mammalian
systems (transcription and mammalian two-hybrid assays)
(data not shown). Interestingly, the double mutant F264T/
L424D is a revertant mutation, as mutant F264T was
immune to antagonist of the effects of ketoconazole, yet
L424D influenced the antagonist binding properties of the
F264T mutant, thus making the double mutant re-sensitized
to ketoconazole antagonism. This implies that Leu-424 may
also be remotely involved in the interaction with ketocona-
zole (see Fig. 5 and Table 2).

The mutations obtained from our yeast two-hybrid analysis
were then reanalyzed in mammalian transcription, protein-
protein interaction (GST pulldown) and protein binding assays.
We were able to demonstrate that the recurring mutants found
in the corresponding blue colonies within the ketoconazole
plus plates, S208W, Q272H, F264T, and F264W, were all able to
transactivate with a human PXR ligand, rifampicin, in both the
mammalian transcription (Table 1; Fig. 44) as well as the two-
hybrid (Fig. 4B) assay. The same trends were observed in pro-
tein pulldown assays (Fig. 4C) and [*H]ketoconazole protein
binding studies (Fig. 4D). The mutant Q272H was of particular
interest, given that an analog of ketoconazole (FLB-1) lacking
the imidazole group was able to antagonize PXR activation and,
therefore, suggested specific interactions between the imidaz-
ole moiety and histidine (11, 41, 42). To clarify whether keto-
conazole indeed interacts with residues Ser-208, Gln-272, and
Phe-264 on PXR, we chose to perform [*H]ketoconazole pro-
tein binding studies. Indeed, as predicted by our protein pull-
down studies, whereas ketoconazole binds to wild-type PXR
protein, it is unable to bind to the PXR mutants (Fig. 4D). Resid-
ual [*H]ketoconazole binding CPM values, after cold competi-
tion, are likely due to nonspecific but high avidity binding to
amino acid residues 107-204. We were also able to demon-
strate that the following mutations observed on the white col-
ony screen, E270W, E282Q, K259E, E270G, and L424D, were all
able to be transactivated with human PXR ligand, rifampicin,
but antagonized with ketoconazole in both the mammalian
transcription (Fig. 5A4) as well as the two-hybrid (Fig. 5B) assay.
The same trends were observed in protein pulldown assays (Fig.
5C) and [*H]ketoconazole protein binding studies (Fig. 5D).

Visualization of Residues Identified in This Study and Keto-
conazole Docked Near Ser-208—Fig. 6 shows residues in the
INRL structure that were identified in this study by a yeast
two-hybrid assay. GIn-272 and Phe-264 are close to the coacti-
vator SRC-1 binding groove, and ketoconazole interacts with
GIn-272 and Phe-264, which is thought to result in the disrup-
tion of PXR-SRC-1 interaction (Fig. 6A). Ser-208 is clearly
shown to be distant from the AF-2 domain on the opposite side
of the PXR structure (Fig. 6B). We, therefore, docked ketocona-
zole at this location to determine if this was a likely additional
antagonist binding site. Fifteen (16) docked poses of ketocona-
zole were obtained; the best scoring (LibDock score 129.4)
occupied a channel leading into the LBD (supplemental Fig.
S5A) with the azole ring solvent exposed but directed toward
Ser-208 (supplemental Fig. S5B). Eight poses had ketoconazole
similarly positioned in this channel. The second best docked
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pose (LibDock score 110.16) presented ketoconazole on the
surface of PXR occupying a cleft (supplemental Fig. S6A) also in
close proximity to Ser-208 (supplemental Fig. S6B). In both
binding poses Ser-208 is involved in van der Waals interactions
with ketoconazole.

DISCUSSION

Nuclear receptor alternate-site modulators, specifically
those defining novel pharmacophores, is the next leap forward
in the discovery of newer high affinity ligands with receptor-
specific action (43—49). Our method describes a novel tech-
nique to determine genetic interactions of protein residues
with ligands/antagonists. This approach is likely to have its
greatest utility for deciphering protein residue-ligand interac-
tions for proteins/enzymes that are not amenable to classical
structural biology techniques (e.g. crystal structure elucida-
tion). When combined with docking models to predicted allos-
teric sites, this method promises to deliver additional evidence
supporting those particular interactions. Indeed, our method
provides the means to identify additional sites hitherto undis-
covered by conventional approaches.

Drug resistance in yeast can be obtained by mutations that
prevent the uptake of drug (permeability mutations), result in
rapid export (export mutations), or affect the drug target gene
or a gene in the downstream/upstream of the target gene to
overcome the deleterious effect (pathway mutations). For the
purpose of isolating mutants of PXR resistant to ketoconazole,
we need yeast strains that allow the uptake of the drug to facil-
itate studies on protein-protein interactions and yet are viable
in the presence of the drug. Therefore, permeability and export
mutations are not desirable, but pathway mutations of yeast
are. It has been previously reported that yeast strains that har-
bor mutations in ERG3 and ERG11 genes are viable and exhibit
significant resistance to ketoconazole and its analogs (MIC,
10-100-fold greater than parental strain) (50, 51). Currently
available yeast two-hybrid strains do not harbor these muta-
tions. Therefore, we introduced mutations of ERG3 and ERG11
into yeast strain CTY5-10d. The mutant yeast performed
robustly in the yeast two-hybrid assays and, when the results
were coupled to docking studies, provided a meaningful inter-
pretation of residues that would likely interact with ketocona-
zole. To our surprise, multiple additional modes of binding
were determined presenting novel opportunities for antagonist
discovery.

Using the yeast-two hybrid method we have identified
important residues for ketoconazole interactions on PXR. Four
of these residues had been predicted earlier, and docking had
suggested ketoconazole interfered with co-activator binding
(11). The current study identified Ser-208 as a new ketocona-
zole interacting amino acid that is distant from the AF-2 (Fig.
6B) and thus presents a second potential antagonist location
deserving of further study and site-directed mutagenesis. Using
docking, we propose two potential regions close to Ser-208 on
the surface of the protein (supplemental Figs. S5 and S6). One
site is a channel leading to the LBD in which ketoconazole can
reach into the LBD and potentially interfere with agonist bind-
ing (supplemental Fig. S5). A second location is a surface cleft
(supplemental Fig. S6), which is solvent-exposed and may
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FIGURE 4. Mammalian characterization of PXR mutations identified on yeast screen (blue colonies). A,a mammalian hPXR (or hPXR mutant) transactiva-
tion assay (as illustrated) in CV-1 cells in the presence or absence of rifampicin, ketoconazole, or both is shown. B,a mammalian two-hybrid assay (as illustrated)
in CV-1 cells performed in the presence or absence of drugs was as in A. A and B, histograms represent the mean = S.D. of two independent assays each
performed in triplicate. C, shown is a GST pulldown assay using 3*S-labeled human PXR (or mutants as indicated) and GST or GST-SRC-1 (RID) in the presence
of rifampicin (10 um) or rifampicin (10 um) and ketoconazole (25 um) as indicated. The Input lane represents 10% of the protein in the binding assay.
D, ketoconazole binding with cold competition is shown. Glutathione-Sepharose beads with GST fusion PXR (or mutants) protein fragments as indicated were
used for direct binding assay. Coomassie Blue-stained pure GST fusion proteins are shown in the upper panel. Note: proteins are not in the same gel. Direct
binding assay was performed using [*Hlketoconazole (black bars), and cold competition assay (white bars) assay was performed using [*Hlketoconazole and
unlabeled excess ketoconazole (1000X cold). Histograms represent the mean = S.D. of at least two experiments each performed in triplicate. Black arrow,
background binding CPM; RLU, relative light units; hPXR, human PXR; SRC-1(RID), SRC-1 receptor interacting domain, UAS, upstream activating sequences for
Gal4; VP16, VP16 activation domain; DB, DNA binding; Tk, thymidine kinase; MRP2, MRP2 promoter; aa, amino acids.

interfere with protein-protein interactions, specifically homo-
dimerization, as it is close to the homodimer interface (52).
Preventing homodimerization is known to decrease receptor
activity (53). Neither of these two locations near Ser-208 has
been previously identified as important for PXR antagonism.
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Non-azole analogs of ketoconazole may also dock in these same
locations (12). However, other smaller antagonists fit prefera-
bly in the AF-2 region. Identification of these new sites close to
Ser-208, an amino acid identified as important for ketoconazole
binding, suggests the further potential to design site-specific
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FIGURE 5. Mammalian characterization of PXR mutations identified on yeast screen (white colonies). A, shown is a mammalian hPXR (or hPXR mutant)
transactivation assay (as illustrated) in CV-1 cells in the presence or absence of rifampicin, ketoconazole or both. B, shown is a mammalian two-hybrid assay (as
illustrated) in CV-1 cells performed in the presence or absence of drugs as in A. A and B, histograms represent the mean =+ S.D. of two independent assays each
performed in triplicate. C, shown is a GST pulldown assay using 3*S-labeled human PXR (or mutants as indicated) and GST or GST-SRC-1 (RID) in the presence
of rifampicin (10 um) or rifampicin (10 um) and ketoconazole (25 um) as indicated. The Input lane represents 10% of the protein in the binding assay. D, shown
is ketoconazole binding with cold competition. Glutathione-Sepharose beads with GST fusion PXR (or mutants) protein fragments as indicated were used for
direct binding assay. Coomassie Blue-stained pure GST fusion proteins are shown in the upper panel. Note: proteins are not in the same gel. Direct binding
assay was performed using [*Hlketoconazole (black bars) and the cold competition assay (white bars) was performed using [*Hlketoconazole and unlabeled
excess ketoconazole (1000X cold). Histograms represent the mean = S.D. of at least two experiments, each performed in triplicate. Black arrow, background
binding CPM; RLU, relative light units; hPXR, human PXR; SRC-1(RID), SRC-1 receptor interacting domain, UASg, upstream activating sequences for Gal4; VP16,
VP16 activation domain; DB, DNA binding; Tk, thymidine kinase; MRP2, MRP2 promoter; aa, amino acids.

antagonists. Further analysis of whether interfering with co-ac-
tivator binding, homodimerization, or agonist binding in the
LBD is the preferred form of antagonism may need to proceed
in parallel with the assessment of which may be more amenable
to drug-like design. Also it should be noted that we used the
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INRL structure because it was originally co-crystallized with
SRC-1 and was the subject of our previous docking efforts (11,
12). In these previous studies the agonist was removed, whereas
in the current study it was present to prevent ketoconazole
from binding in the LBD. It is likely that different crystal struc-
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FIGURE 6. Structural localization of ketoconazole interacting PXR resi-
dues identified by yeast two-hybrid assay. A, shown is the location of Phe-
264 (F264) and GIn-272 (Q272) in the human PXR LBD crystal structure
(magenta) relative to the experimentally resolved binding site of the LXXLL
motif of human SRC-1 (cyan). B, shown is the location of Ser-208 in the human
PXR LBD crystal structure (magenta) relative to the experimentally resolved
binding site for the ligand SR-12813 (yellow). Additionally, the position of a
computationally modeled ketoconazole molecule (green) observed near Ser-
208 is also shown.

tures (with different agonists bound) may reveal other potential
sites of antagonist binding as well impacting which site may be
preferred.

One obstacle in this assay is the presence of false positive blue
colonies, which may not always indicate ketoconazole-resistant
PXR mutations. The lacZ expression could be regained in the
presence of ketoconazole due to mutation in the PXR that ren-
ders the protein constitutively active or make it independent of
SRC-1 interaction. Such mutants of PXR can be easily distin-
guished from the true ketoconazole-resistant mutants by test-
ing the ability of the LexA-DB-PXR to self-activate lacZ expres-
sion, i.e. these mutants will yield blue colonies in the absence of
GAL4AC-SRC-1. Such mutants could then be separated from
the panel of true ketoconazole-resistant mutants. In our screen
of 108 blue colonies on keto-plus plates, the recurring mutants
S208W, Q272H, F264T, and F264W were reintroduced into
yeastin the absence of GAL4AC-SRC-1. There was no evidence
for self-activation of lacZ expression (data not shown). As a
corollary, the mutants were also introduced into yeast using the
GAL4AC plasmid in the absence of LexA-DB-SRC-1. These
experiments also showed no evidence for self-activation of lacZ
(data not shown). It is still conceivable that mutants that appear
at a frequency below that of our threshold (i.e. occurrence once
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in the entire assay) may still provide important alternate resi-
dues that interact with ketoconazole. However, because our
focus was on defining high probability binding sites as those
residues defining the site that would be overrepresented in such
ascreen, we did not fully investigate mutants appearing is a very
low frequency. It is conceivable that there could be some false
positives due to constitutive activity of the mutation itself. Fur-
thermore, feasible methods for objective screening based on
colorimetric density evaluations might be required to optimize
this assay for high throughput use in drug discovery (54).

Another approach to verification of true-positive ketocona-
zole PXR mutants would be to verify whether interactions of
PXR with its co-repressor (i.e. SMRT) is lost due to the muta-
tion (8, 35). Indeed, mammalian two-hybrid assays using PXR
and SMRT plasmids showed significantly reduced activation of
mutant PXR-SMRT interactions (supplemental Fig. S4).

In addition to isolation of ketoconazole-resistant mutants of
PXR, this assay could be used to isolate intramolecular revertants
of ketoconazole-resistant mutants. Intramolecular revertants are
second site suppressors (a second mutation independent of the
first keto-resistant mutation) of ketoconazole-resistant mutants
that render the mutant PXR sensitive to ketoconazole (e.g. F264T/
L424D). Such mutations are valuable in determining the exact res-
idues and binding pockets of ketoconazole and in determining the
mechanism.

Our approach provides a powerful new method for isolation
of genetic interaction allosteric ligand-protein residues for pro-
teins not amenable to conventional structural biology and/or
proteomic approaches. The recent development of allosteric
site modulators of nuclear receptors has paved the way for new,
more potent and less toxic drugs that might enter the clinic in
the future. For example, conventional anti-androgens targeting
AR invariably fail in the clinic due to the development of resist-
ance that are largely attributed to AR signaling (54, 55). AR has
the unique property of binding large peptide motifs, thus,
implicating utility for size-exclusion principles in drug discov-
ery to selectively target AR or other NRs (56). Indeed, com-
pounds (e.g. amphipathic benzene coactivator binding inhibi-
tors) have been discovered with IC, values as low as 1.9 um that
selectively target AR over ER (57). These compounds are active
in LNCaP cells harboring the AR T877A mutation (rendering
agonist activity rather than antagonist activity for hydroxyflut-
amide), which is present in ~30% of patients with metastatic
prostate cancer (58). More recently, novel synthetic com-
pounds with peroxisome proliferator-activated receptor-vy ago-
nist activity have been screened with a unique mode of action;
that is, complete lack of classical transcriptional induction but
with a site-selective block of Cdk5-mediated phosphorylation
that renders peroxisome proliferator-activated receptor-y
active in adipocytes (44). One inhibitor (i.e. SR1664) site and
tissue selective actions on peroxisome proliferator-activated
receptor-+y results in potent anti-diabetic activity without caus-
ing fluid retention and weight that are typical side effects of
conventional LBD targeting peroxisome proliferator-activated
receptor-y drugs (44). Similar efforts could be developed for
PXR for which modulators of activity through post-transla-
tional modifications (e.g phosphorylation, acetylation) have
been shown to occur with discrete enzymes (37, 59, 60).
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