435 research outputs found

    Study of Stability of a Charged Topological Soliton in the System of Two Interacting Scalar Fields

    Full text link
    An analytical-numerical analysis of the singular self-adjoint spectral problem for a system of three linear ordinary second-order differential equations defined on the entire real exis is presented. This problem comes to existence in the nonlinear field theory. The dependence of the differential equations on the spectral parameter is nonlinear, which results in a quadratic operator Hermitian pencil.Comment: 22 pages, 2 figure

    Radial excitations of Q-balls, and their D-term

    Full text link
    We study the structure of the energy-momentum tensor of radial excitations of Q-balls in scalar field theories with U(1) symmetry. The obtained numerical results for the 1N231\le N \le 23 excitations allow us to study in detail patterns how the solutions behave with N. We show that although the fields and energy-momentum tensor densities exhibit a remarkable degree of complexity, the properties of the solutions scale with N with great regularity. This is to best of our knowledge the first study of the D-term d1 for excited states, and we demonstrate that it is negative --- in agreement with results from literature on the d1 of ground state particles.Comment: 11 pages, 12 figure

    Stable branches of a solution for a fermion on domain wall

    Full text link
    We discuss the case when a fermion occupies an excited non-zero frequency level in the field of domain wall. We demonstrate that a solution exists for the coupling constant in the limited interval 1<g<gmax1.651<g<g_{max}\approx 1.65. We show that indeed there are different branches of stable solution for gg in this interval. The first one corresponds to a fermion located on the domain wall (1<g<2π41<g<\sqrt[4]{2\pi}). The second branch, which belongs to the interval 2π4ggmax\sqrt[4]{2\pi}\le g\le g_{max}, describes a polarized fermion off the domain wall. The third branch with 1<g<gmax1<g<g_{max} describes an excited antifermion in the field of the domain wall.Comment: 15 pages, 7 figures, references adde

    A remark on collisions of domain walls in a supersymmetric model

    Get PDF
    The process of collision of two parallel domain walls in a supersymmetric model is studied both in effective Lagrangian approximation and by numerical solving of the exact classical field problem. For small initial velocities we find that the walls interaction looks like elastic reflection with some delay. It is also shown that in such approximation internal parameter of the wall may be considered as a time-dependent dynamical variable.Comment: 6 pages, LaTeX, 3 figures (eps), fig. 2 correcte

    Multi-kink collisions in the ϕ6\phi^6 model

    Get PDF
    We study simultaneous collisions of two, three, and four kinks and antikinks of the ϕ6\phi^6 model at the same spatial point. Unlike the ϕ4\phi^4 kinks, the ϕ6\phi^6 kinks are asymmetric and this enriches the variety of the collision scenarios. In our numerical simulations we observe both reflection and bound state formation depending on the number of kinks and on their spatial ordering in the initial configuration. We also analyze the extreme values of the energy densities and the field gradient observed during the collisions. Our results suggest that very high energy densities can be produced in multi-kink collisions in a controllable manner. Appearance of high energy density spots in multi-kink collisions can be important in various physical applications of the Klein-Gordon model.Comment: 21 pages, 8 figures; v2: minor changes to match version published in JHE
    corecore