9 research outputs found

    Design and Research of Electron Cyclotron Resonance Heating and Current Dive System on HL-2M Tokamak

    Full text link
    A research has been conducted to develop an 8MW electron cyclotron resonance heating and current drive (ECRH/ECCD) system on HL-2M tokamak. The ECRH system compromise eight 1MW gyrotrons, eight evacuated transmission lines and three launchers. The main purpose of the ECRH system was to suppress the neo-classical tearing modes and control the plasma profile. This paper presents an overview of the design and studies performed in this framework. Some primary test results of the critical components have been released in this paper, e.g. polarizers, power monitor and fast steering launchers

    Simulation Analysis of a Wavefront Reconstruction of a Large Aperture Laser Beam

    No full text
    In order to solve the problem of atmospheric influence on the far-field measurement of the quality of a laser beam, we proposed a direct wavefront measurement system based on the Hartmann detection principle, which can measure large apertures and high-power laser beams. The measuring system was composed of a lens array and a detector. The wavefront detection of a large aperture laser beam could be realized by controlling the distance between the lenses and the size of the lens. The influence of different duty cycle factors on the accuracy of the wavefront reconstruction under the same arrangement and different arrangement conditions was simulated and analyzed. The simulation results showed that when the sub-lenses of the system were not in close contact, the reconstruction accuracy of the duty factor of 0.8 was close to that of the case of the duty factor of 1. Within a certain detection range, the hexagonal arrangement of 19 lenses and the arrangement of 8 × 8 lens arrays had a high wavefront restoration accuracy; both were lower than 0.10 λ. The system proposed in this paper was suitable for measuring a large aperture laser beam, providing a new idea for measuring and analyzing the quality of large aperture laser beams. It also has an important significance for improving the measurement accuracy of the beam quality

    Power measurement system of ECRH on HL-2A

    No full text
    Electron Cyclotron Resonance Heating (ECRH) is one of the main auxiliary heating systems for HL-2A tokamak. The ECRH system with total output power 5MW has been equipped on HL-2A which include 6 sets of 0.5MW/1.0s at a frequency of 68GHz and 2 sets of 1MW/3s at a frequency of 140GHz. The power is one of important parameters in ECRH system. In this paper, the method for measuring the power of ECRH system on HL-2A is introduced which include calorimetric techniques and directional coupler. Calorimetric techniques is an existing method, which is used successfully in ECRH commissioning and experiment, and the transmission efficiency of ECRH system is achieved by measuring the absorbed microwave power in the Match Optical Unit (MOU), gyrotron output window and tours window of the EC system use this method. Now base on the theory of electromagnetic coupling through apertures, directional couplers are being designed, which is a new way for us

    Study on the Aging Mechanism of Down Fiber Under the Daily Washing and Drying Conditions

    No full text
    In order to clarify the aging mechanism of down fiber under the daily washing and drying conditions, fluffiness, whiteness, microscopic morphology, crystallinity and molecular structure of down fiber after different washing and drying treatments were observed. Results showed that the daily washing conditions of weak acid or alkali (pH = 5–9) and drying conditions of low temperature drying (55°C and sunlight) only slightly affected fluffiness, whiteness, and microscopic morphology of down fiber. However, the addition of short-term mechanical agitation reduced damage and even improved fluffiness, whiteness. Additionally, down fiber did not experience chemical damage in the above environment. However, the strong alkali (pH = 10, pH = 12) washing environment and high temperature (105°C,155°C) drying treatment not only caused the decline of fluffiness, whiteness, microscopic morphology but also caused the change of crystallinity and molecular structure. Additionally, the stronger the alkalinity, the longer the time, the higher the drying temperature, the more obvious the performance decline. Moreover, regardless of the washing and drying conditions, mechanical agitation for a long time easily led to performance degradation. Therefore, down fibers were suitable for the daily washing conditions of weak acid and alkali (pH = 5–9) and drying conditions of low temperature drying (55°C or sunlight) with slightly mechanical agitation

    Power measurement system of ECRH on HL-2A

    No full text
    Electron Cyclotron Resonance Heating (ECRH) is one of the main auxiliary heating systems for HL-2A tokamak. The ECRH system with total output power 5MW has been equipped on HL-2A which include 6 sets of 0.5MW/1.0s at a frequency of 68GHz and 2 sets of 1MW/3s at a frequency of 140GHz. The power is one of important parameters in ECRH system. In this paper, the method for measuring the power of ECRH system on HL-2A is introduced which include calorimetric techniques and directional coupler. Calorimetric techniques is an existing method, which is used successfully in ECRH commissioning and experiment, and the transmission efficiency of ECRH system is achieved by measuring the absorbed microwave power in the Match Optical Unit (MOU), gyrotron output window and tours window of the EC system use this method. Now base on the theory of electromagnetic coupling through apertures, directional couplers are being designed, which is a new way for us

    Design and Research of Electron Cyclotron Resonance Heating and Current Dive System on HL-2M Tokamak

    No full text
    A research has been conducted to develop an 8MW electron cyclotron resonance heating and current drive (ECRH/ECCD) system on HL-2M tokamak. The ECRH system compromise eight 1MW gyrotrons, eight evacuated transmission lines and three launchers. The main purpose of the ECRH system was to suppress the neo-classical tearing modes and control the plasma profile. This paper presents an overview of the design and studies performed in this framework. Some primary test results of the critical components have been released in this paper, e.g. polarizers, power monitor and fast steering launchers

    Design and Research of Electron Cyclotron Resonance Heating and Current Dive System on HL-2M Tokamak

    No full text
    A research has been conducted to develop an 8MW electron cyclotron resonance heating and current drive (ECRH/ECCD) system on HL-2M tokamak. The ECRH system compromise eight 1MW gyrotrons, eight evacuated transmission lines and three launchers. The main purpose of the ECRH system was to suppress the neo-classical tearing modes and control the plasma profile. This paper presents an overview of the design and studies performed in this framework. Some primary test results of the critical components have been released in this paper, e.g. polarizers, power monitor and fast steering launchers
    corecore