41 research outputs found

    Exendin-4 attenuates myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein expression

    Get PDF
    Background: High mobility group box 1 protein (HMGB1) plays an important role in myocardial ischemia and reperfusion (I/R) injury. Exendin-4 (Ex-4), glucagon-like peptide-1 receptor agonist, has been reported to attenuate myocardial I/R injury. This study was to investigate the potential mechanism by which Ex-4 attenuates myocardial I/R injury in rats.Methods: Anesthetized male rats were once treated with Ex-4 (5 μg/kg, i.v.) 1 h before ischemiain the absence and/or presence of exendin (9-39) (an antagonist for glucagon-like peptide-1receptor, 5 μg/kg, i.v.), and then subjected to ischemia for 30 min followed by reperfusion for 4 h. Lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), superoxide dismutase (SOD) activity and infarct size were measured. HMGB1 expression was assessed by immunoblotting.Results: The results showed that pretreatment of Ex-4 could significantly decrease the infarct size and the levels of LDH and CK after 4 h reperfusion (all p < 0.05). Ex-4 could also significantly inhibit the increase of the MDA level, the decrease of the SOD level (both p < 0.05). Meanwhile, Ex-4 could signifi cantly inhibit HMGB1 expression induced by I/R. Administration of exendin (9-39) could abolish the protective effect of Ex-4 (all p < 0.05).Conclusions: The present study suggested that Ex-4 could attenuate myocardial I/R injury which may be associated with inhibiting HMGB1 expression

    Random Trees Are the Cornerstones of Natural Forests

    No full text
    Natural forests serve as the main component of the forest ecosystem. An in-depth interpretation of tree composition and structure of forest community is of great significance for natural forest conservation, monitoring, management, and near-natural silviculture of plantation forest. In this study, we explored the importance of key tree groups—random trees—in natural communities, compared the similarity between the random trees and the communities. This research studies six stem-mapped permanent plots (100 × 100 m2) of the typical natural forests in three different geographic regions of China. Several variables and their distributions were applied to study community characteristics comprehensively, including species abundance, diameter distribution, spatial pattern, mingling, crowding, and competition. The genetic absolute distance method is used to analyze the similarity between the random trees and the communities. Our results show that the features of random trees are highly consistent with the communities. The study proposes that random trees are the cornerstones of natural forests. Its quantitative advantage explains the key role that random trees play in natural forests. The study could provide a scientific insight into the protection, monitoring, and management of forests

    Multisignal VGG19 Network with Transposed Convolution for Rotating Machinery Fault Diagnosis Based on Deep Transfer Learning

    No full text
    To realize high-precision and high-efficiency machine fault diagnosis, a novel deep learning framework that combines transfer learning and transposed convolution is proposed. Compared with existing methods, this method has faster training speed, fewer training samples per time, and higher accuracy. First, the raw data collected by multiple sensors are combined into a graph and normalized to facilitate model training. Next, the transposed convolution is utilized to expand the image resolution, and then the images are treated as the input of the transfer learning model for training and fine-tuning. The proposed method adopts 512 time series to conduct experiments on two main mechanical datasets of bearings and gears in the variable-speed gearbox, which verifies the effectiveness and versatility of the method. We have obtained advanced results on both datasets of the gearbox dataset. The dataset shows that the test accuracy is 99.99%, achieving a significant improvement from 98.07% to 99.99%

    A simple and effective approach to quantitatively characterize structural complexity

    No full text
    Abstract This study brings insight into interpreting forest structural diversity and explore the classification of individuals according to the distribution of the neighbours in natural forests. Natural forest communities with different latitudes and distribution patterns in China were used. Each tree and its nearest neighbours form a structural unit. Random structural units (or random trees) in natural forests were divided into different sub-types based on the uniform angle index (W). The proportions of different random structural units were analysed. (1) There are only two types of random structural units: type R1 looks similar to a dumbbell, and type R2 looks similar to a torch. These two random structural units coexist in natural forests simultaneously. (2) The proportion of type R1 is far less than that of R2, is only approximately 1/3 of all random structural units or random trees; R2 accounts for approximately 2/3. Furthermore, the proportion of basal area presents the same trend for both random structural units and random trees. R2 has approximately twice the basal area of R1. Random trees (structural units) occupy the largest part of natural forest communities in terms of quantity and basal area. Meanwhile, type R2 is the largest part of random trees (structural units). This study finds that the spatial formation mechanism of natural forest communities which is of great significance to the cultivation of planted forests

    Spatial structural characteristics of forests dominated by Pinus tabulaeformis Carr.

    No full text
    The Chinese pine (Pinus tabulaeformis Carr.) is an ecologically and economically important evergreen coniferous tree which dominates warm temperate forests throughout northern China. We established two permanent plots within the Chinese pine forest in the Jiulong Mountains, Beijing, China. To understand the structural characteristics and dynamics of these plots, we analyzed the spatial structural characteristics within nearest-neighbor relationships using the bivariate distributions of the stand spatial structural parameters: uniform angle index, W; mingling index, M; dominance index, U; and crowding index, C. Results revealed that most trees in the forest were randomly distributed. The predominant individuals and randomly arranged trees were in very dense areas and surrounded by the same species. In addition, both plots exhibited a uniform size differentiation pattern. The two plots differed mainly in the level of species mixture and dominance. The majority of reference trees in the pure Chinese pine forest (plot 1) exhibited poor species mingling and low dominance, whereas trees in the mixed Chinese pine forest (plot 2) were evenly distributed in each mingling class and most trees were of intermediate dominance. The study results are useful for optimizing forest management activities in the studied stands, promoting tree growth, regeneration and habitat diversity, and improving forest quality at a fine scale

    A Novel Comprehensive Evaluation Method of Forest State Based on Unit Circle

    No full text
    Comprehensive evaluation of forest state is the precondition and critical step for forest management. To solve the problem that the radar plot and unit circle only focus on the value of each the evaluation index, this paper proposes a novel method for comprehensively and simultaneously evaluating the functionality and inhomogeneity of forest state based on the modified unit circle method. We evaluated the forest state of the Quercus aliena BL. var. acuteserrata Maxim. ex Wenz. broad-leaved mixed forest in the Xiaolong Mountains Forest Area of Gansu Province and the Pinus koraiensis Sieb. et Zucc. broad-leaved mixed forest in Jilin Province in China. According to the principle of comprehensive, scientific and operability, 10 evaluation indices on forest structure and vitality were selected to construct the evaluation indicator system. Each index was normalized based on the assignment method and ensured to be strictly positive based on reciprocal transformation method. The areas and arc length of the closed graph, formed by connecting every two adjacent indicators, in the radar plot and unit circle were extracted. Based on the isoperimetric theorem (isoperimetric inequality), a comprehensive evaluation model was constructed. Compared with radar chart and unit circle method, each index in the newly proposed unit circle method is represented by an independent sector region, reflecting the contribution of the index to the overall evaluation result. Each index has the same relative importance weight, contributing to the estimation the relative sizes of each aspect of forest state. The unique area and arc length of the closed graph help summarize the overall performance with a global score. The expression effect of improved unit circle has been enhanced, and as an English proverb put it, “A picture is worth a thousand words.„ The new proposed method simultaneously evaluates the functionality and inhomogeneity of the forest state and it is a powerful tool for the diagnosis of forest state problems and the decision-making of forest management

    A Novel Method for Calculating Stand Structural Diversity Based on the Relationship of Adjacent Trees

    No full text
    Understanding the diversity and complexity of stand structure is important for managing the biodiversity of forest ecosystem, and stand structural diversity is essential for evaluating forest management activities. Based on the relationship of adjacent trees, a quantitative method of stand structure diversity is proposed to express the heterogeneity of stand structure in tree species, distribution pattern, species separation and size differentiation. In this study, we defined the diversity of structural unit types and derived a new index of forest structural diversity (SD′) employing the additivity principle of the Shannon–Weiner index. The efficiency of the index was verified by applying the new measure to sixteen field survey samples at different locations. The mountain rainforest in Hainan had the highest forest structural diversity, followed by broad-leaved Korean pine forests in Jiaohe (2), Jiaohe (1) and an oak-broadleaved mixed natural forest at Xiaolongshan (2). The SD′ values of plantations and pure natural forest were lower. The simulated data of different thinning methods and the intensity of broad-leaved Korean pine forests show that the new measure can reflect forest management changes on stand structure diversity. The value of SD′ compared with no treatments and the differences were greater as thinning intensity increased. The SD′ index provides minimum and maximum values for different structural unit types in forests to achieve a unified comparative basis for calculating forest structure diversity. It has the characteristics of the general diversity index and can well express the diversity of tree species, distribution pattern and size differentiation simultaneously. The SD′ index can not only calculate the structural diversity of mixed species forests but can also be used to calculate the structural diversity of pure forests. It can also be used to evaluate the change in stand structure diversity after management interventions
    corecore