5 research outputs found

    Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens

    Get PDF
    Isolation of endophytic actinomycetes is an important step to screen antimicrobial compounds to curb the threat of drug-resistant strains of human pathogens. Out of the 50 endophytic actinomycetes obtained from surface sterilized root, stem and leaf tissues of Syzygium cumini, 50 isolates (30%) exhibited antimicrobial activity. Antistaphylococcal activity was displayed by most of the isolates, with maximum percent inhibition by J-10 (Mean of Inhibition Factor=12.12 mm2). A total of 8 isolates (4 each) were able to hydrolyse protein (proteinase activity) and solubilize chitin (chitinase activity). Results of thin layer chromatography confirm the production of chloramphenicol family |antibiotic by the isolate J-5. This is the first report providing an insight into untapped endophytic actinomycete milieu of Syzygium cumini yet to be explored which might be a promising source for novel antimicrobial agents

    A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation

    Get PDF
    Background: The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method: In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B) are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results: Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF½ helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s) for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion: The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from the parasite that could provide leads to identify novel drug targets against malaria

    A systematic classification of <it>Plasmodium falciparum </it>P-loop NTPases: structural and functional correlation

    No full text
    Abstract Background The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B) are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF1/2 helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s) for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from the parasite that could provide leads to identify novel drug targets against malaria.</p

    Needle Stick Injuries among Healthcare Waste Handlers in a Tertiary Care Hospital of Delhi

    No full text
    Introduction: World Health Organization (WHO) reports in the World Health Report 2002 that of the 35 million HCWs, 2 million suffer percutaneous exposure to infectious diseases each year. Healthcare waste handlers who are responsible for handling and collection of healthcare wastes are vulnerable to the hazards of occupational exposure to biomedical waste (BMW) as a consequence of improper disposal practices of the waste generators.Objective: The study was conducted to determine the prevalence of Needle stick injury (NSI) among the study subjects, and to study the knowledge and practice regarding Needle stick injury (NSI) among the study subjects.Methodology: A Hospital-based, cross-sectional study was conducted among healthcare waste handlers in a tertiary care hospital of Delhi. Of 390 healthcare waste handlers, 199 Bio-medical waste handlers were chosen on the basis of convenience according to their work shift.Results: Sixty two (31.1%) workers had knowledge that NSI during BMW handling can cause hepatitis and 127 (63.8%) had knowledge that it can lead to HIV infection among them. The prevalence of NSI came to be 14.6% within the past six months.Conclusion: A gap between knowledge and practice regarding action after NSI was found; therefore, measures to increase awareness are definitely required
    corecore