788 research outputs found

    Phase diagrams of Janus fluids with up-down constrained orientations

    Full text link
    A class of binary mixtures of Janus fluids formed by colloidal spheres with the hydrophobic hemispheres constrained to point either up or down are studied by means of Gibbs ensemble Monte Carlo simulations and simple analytical approximations. These fluids can be experimentally realized by the application of an external static electrical field. The gas-liquid and demixing phase transitions in five specific models with different patch-patch affinities are analyzed. It is found that a gas-liquid transition is present in all the models, even if only one of the four possible patch-patch interactions is attractive. Moreover, provided the attraction between like particles is stronger than between unlike particles, the system demixes into two subsystems with different composition at sufficiently low temperatures and high densities.Comment: 10 pages, 6 figure

    Structure based de novo design of IspD inhibitors as anti-tubercular agents

    Get PDF
    Tuberculosis is one of the leading contagious diseases, caused by Mycobacterium tuberculosis. Despite improvements in anti-tubercular agents, it remains one of the most prevalent infectious diseases worldwide, responsible for a total of 1.6 million deaths annually. The emergence of multidrug resistant strains highlighted the need of discovering novel drug targets for the development of anti-tubercular agents. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD) is an enzyme involved in MEP pathway for isoprenoid biosynthesis, which is considered an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammals. In the present study, we have employed structure based drug design approach to develop novel and potent inhibitors for IspD receptor. To explore binding affinity and hydrogen bond interaction between the ligand and active site of IspD receptor, docking studies were performed. ADMET and synthetic accessibility filters were used to screen designed molecules. Finally, ten compounds were selected and subsequently submitted for the synthesis and in vitro studies as IspD inhibitors

    Platinum catalysed alcohol oxidation : kinetics, reaction engineering, and process design

    Get PDF

    Question Answering System using Open Source Software

    Get PDF
    To get the answers of a question there are lots of search engine availbale. But the problem with the search engine is that instead of giving a straight forrward answer they usually gives the links/URL to the webpages which might have the answers. Instead of providing links Question Answering System will provide the straighforward answer to user\u27s question. Tasks intended by the project : • Takes question as an input from the user. • Analyses the sentiment behinds the question. • Lookover the information availbale in the knowledge base related to question. • Compute the answer of the question from the knowledge base. • Present the answer to the user if it is available. Strightforward answer will be very useful and time efficient and it is really helpful for the users who are using small screen devices, since in those devices it is very hard to find answers in webpage with lots of irrelevant content

    Self-assembly scenarios of patchy colloidal particles

    Full text link
    The rapid progress in precisely designing the surface decoration of patchy colloidal particles offers a new, yet unexperienced freedom to create building entities for larger, more complex structures in soft matter systems. However, it is extremely difficult to predict the large variety of ordered equilibrium structures that these particles are able to undergo under the variation of external parameters, such as temperature or pressure. Here we show that, by a novel combination of two theoretical tools, it is indeed possible to predict the self-assembly scenario of patchy colloidal particles: on one hand, a reliable and efficient optimization tool based on ideas of evolutionary algorithms helps to identify the ordered equilibrium structures to be expected at T = 0; on the other hand, suitable simulation techniques allow to estimate via free energy calculations the phase diagram at finite temperature. With these powerful approaches we are able to identify the broad variety of emerging self-assembly scenarios for spherical colloids decorated by four patches and we investigate and discuss the stability of the crystal structures on modifying in a controlled way the tetrahedral arrangement of the patches.Comment: 11 pages, 7 figures, Soft Matter Communication (accepted

    CSUM: A Novel Mechanism for Updating CubeSat while Preserving Authenticity and Integrity

    Full text link
    The recent rise of CubeSat has revolutionized global space explorations, as it offers cost-effective solutions for low-orbit space applications (including climate monitoring, weather measurements, communications, and earth observation). A salient feature of CubeSat is that applications currently on-boarded can either be updated or entirely replaced by new applications via software updates, which allows reusing in-orbit hardware, reduces space debris, and saves cost as well as time. Securing software updates employing traditional methods (e.g., encryption) remains impractical mainly due to the low-resource capabilities of CubeSat. Therefore, the security of software updates for CubeSats remains a critical issue. In this paper, we propose CubeSat Update Mechanism (CSUM), a lightweight scheme to provide integrity, authentication, and data freshness guarantees for software update broadcasts to CubeSats using a hash chain. We empirically evaluate our proof of concept implementation to demonstrate the feasibility and effectiveness of our approach. CSUM can validate 50,000 consecutive updates successfully in less than a second. We also perform a comparative analysis of different cryptographic primitives. Our empirical evaluations show that the hash-based approach is at least 61×\times faster than the conventional mechanisms, even in resource-constrained environments. Finally, we discuss the limitations, challenges, and potential future research directions for CubeSat software update procedures.Comment: This is an extended version of our paper accepted at IEEE LCN 202

    Fabrication and electrokinetic motion of electrically anisotropic Janus droplets in microchannels

    Get PDF
    This is the peer reviewed version of the following article: Li, M. and Li, D. (2017), Fabrication and electrokinetic motion of electrically anisotropic Janus droplets in microchannels. ELECTROPHORESIS, 38: 287–295 which has been published in final form at http://dx.doi.org/10.1002/elps.201600310. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This paper presents experimental investigations of the fabrication and the motion of electrically anisotropic Janus droplets in a microchannel under externally applied direct current (DC) electrical field. The fabrication method of the Janus droplets is presented first. To begin, oil droplets are coated uniformly with positively charged nanoparticles in the aluminum oxide nanoparticle suspension. The electrically anisotropic Janus droplets are formed when the nanoparticles are accumulated to one side of the droplets in response to externally applied DC electric field. The surface coverage of the Janus droplets by nanoparticles can be adjusted by controlling the concentration of the nanoparticle suspension. The flow fields around the Janus droplets moving in a microchannel were observed with tracing particles. Finally, the electrokinetic velocity of the Janus droplets in a microchannel was measured. The effects of the strength of the electrical field, the surface coverage of the Janus droplets by nanoparticles, the size of the droplets as well as the electrolyte concentration on the electrokinetic velocity of the Janus droplets were studied.Natural Sciences and Engineering Research Council of Canad

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles
    corecore