39 research outputs found

    HIV-1 Enhancing Effect of Prostatic Acid Phosphatase Peptides Is Reduced in Human Seminal Plasma

    Get PDF
    We recently reported that HIV-1 infection can be inhibited by innate antimicrobial components of human seminal plasma (SP). Conversely, naturally occurring peptidic fragments from the SP-derived prostatic acid phosphatase (PAP) have been reported to form amyloid fibrils called “SEVI” and enhance HIV-1 infection in vitro. In order to understand the biological consequence of this proviral effect, we extended these studies in the presence of human SP. PAP-derived peptides were agitated to form SEVI and incubated in the presence or absence of SP. While PAP-derived peptides and SEVI alone were proviral, the presence of 1% SP ablated their proviral activity in several different anti-HIV-1 assays. The anti-HIV-1 activity of SP was concentration dependent and was reduced following filtration. Supraphysiological concentrations of PAP peptides and SEVI incubated with diluted SP were degraded within hours, with SP exhibiting proteolytic activity at dilutions as high as 1∶200. Sub-physiological concentrations of two prominent proteases of SP, prostate-specific antigen (PSA) and matriptase, could degrade physiological and supraphysiological concentrations of PAP peptides and SEVI. While human SP is a complex biological fluid, containing both antiviral and proviral factors, our results suggest that PAP peptides and SEVI may be subject to naturally occurring proteolytic components capable of reducing their proviral activity

    Heart neurons use clock genes to control myocyte proliferation

    No full text
    Neurons can regulate the development, pathogenesis, and regeneration of target organs. However, the role of neurons during heart development and regeneration remains unclear. We genetically inhibited sympathetic innervation in vivo, which resulted in heart enlargement with an increase in cardiomyocyte number. Transcriptomic and protein analysis showed down-regulation of the two clock gene homologs&nbsp;Period1/Period2 (Per1/Per2)&nbsp;accompanied by up-regulation of cell cycle genes.&nbsp;Per1/Per2&nbsp;deletion increased heart size and cardiomyocyte proliferation, recapitulating sympathetic neuron&ndash;deficient hearts. Conversely, increasing sympathetic activity by norepinephrine treatment induced Per1/Per2 and suppressed cardiomyocyte proliferation. We further found that the two clock genes negatively regulate myocyte mitosis entry through the Wee1 kinase pathway. Our findings demonstrate a previously unknown link between cardiac neurons and clock genes in regulation of cardiomyocyte proliferation and heart size and provide mechanistic insights for developing neuromodulation strategies for cardiac regen5eration.</div

    Unraveling the 2021 Central Tennessee flood event using a hierarchical multi-model inundation modeling framework

    Get PDF
    Flood prediction systems need hierarchical atmospheric, hydrologic, and hydraulic models to predict rainfall, runoff, streamflow, and floodplain inundation. The accuracy of such systems depends on the error propagation through the modeling chain, sensitivity to input data, and choice of models. In this study, we used multiple precipitation forcings (hindcast and forecast) to drive hydrologic and hydrodynamic models to analyze the impacts of various drivers on the estimates of flood inundation depth and extent. We implement this framework to unravel the August 2021 extreme flooding event that occurred in Central Tennessee, USA. We used two radar-based quantitative precipitation estimates (STAGE4 and MRMS) as well as quantitative precipitation forecasts (QPF) from the National Weather Service Weather Prediction Center (WPC) to drive a series of models in the hierarchical framework, including the Variable Infiltration Capacity (VIC) land surface model, the Routing Application for Parallel Computation of Discharge (RAPID) river routing model, and the AutoRoute and TRITON inundation models. An evaluation with observed high-water marks demonstrates that the framework can reasonably simulate flood inundation. Despite the complex error propagation mechanism of the modeling chain, we show that inundation estimates are most sensitive to rainfall estimates. Most notably, QPF significantly underestimates flood magnitudes and inundations leading to unanticipated severe flooding for all stakeholders involved in the event. Finally, we discuss the implications of the hydrodynamic modeling framework for real-time flood forecasting

    Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma

    Get PDF
    Mucosal surfaces of the reproductive tract as well as their secretions have important roles in preventing sexual transmission of HIV-1. In the current study, the majority of the intrinsic anti-HIV-1 activity of human seminal plasma (SP) was determined to reside in the cationic polypeptide fraction. Antiviral assays utilizing luciferase reporter cells and lymphocytic cells revealed the ability of whole SP to prevent HIV-1 infection, even when SP was diluted 3200-fold. Subsequent fractionation by continuous flow acid-urea (AU)-PAGE and antiviral testing revealed that cationic polypeptides within SP were responsible for the majority of anti-HIV-1 activity. A proteomic approach was utilized to resolve and identify 52 individual cationic polypeptides that contribute to the aggregate anti-HIV-1 activity of SP. One peptide fragment of semenogelin I, termed SG-1, was purified from SP by a multistep chromatographic approach, protein sequenced, and determined to exhibit anti-HIV-1 activity against HIV-1. Anti-HIV-1 activity was transient, as whole SP incubated for prolonged time intervals exhibited a proportional decrease in anti-HIV-1 activity that was directly attributed to the degradation of semenogelin I peptides. Collectively, these results indicate that the cationic polypeptide fraction of SP is active against HIV-1, and that semenogelin-derived peptides contribute to the intrinsic anti-HIV-1 activity of SP.—Martellini, J. A., Cole, A. C., Venkataraman, N., Quinn, G. A., Svoboda, P., Gangrade, B. K., Pohl, J., Sørensen, O. E., Cole, A. M. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma
    corecore