5 research outputs found
Study on reasonable advancing speed of fully-mechanized top-coal caving face in mining contugous extra-thick coal seams in rockburst mine
In view of the rock burst problem caused by too fast advancing speed of the working face, taking the mining of W1123 fully mechanized top coal caving face in contugous extra-thick coal seam in Kuangou Coal Mine as the background, the comprehensive analysis method of numerical simulation and theoretical analysis is adopted. By studying the mining stress and energy evolution characteristics of coal and rock under the influence of different advancing speeds, the characteristics of overlying strata movement and breaking at different advancing speeds are analyzed, and the burst risk of coal and rock mass under the influence of different advancing speeds is evaluated. The reasonable advancing speed of the working face is determined by comprehensive research. The results show that the peak stress of front abutment pressure caused by mining in the working face shows an obvious nonlinear increase trend with the increase of advancing speed, and its increase rate gradually increases. The mining stress level under solid coal is obviously higher than that under goaf, and the front abutment pressure shows an obvious double peak shape. With the increase of advancing speed, the initial breaking distance of overburden and the elastic energy accumulated in overburden obviously increase, and the strain energy density also gradually increases. The displacement of overlying strata increases sharply with the advancing speed, and the damage range is large, showing obvious discontinuous deformation characteristics. At the same time, the faster the advancing speed, the larger the influence range of overlying strata breakage, and the more severe the migration evolution. With the increase of advancing speed, the burst risk index of coal and rock in working face increases obviously, and the risk of mining under solid coal is far greater than that under goaf. The burst risk index of 100 m behind the setup room of overlying coal seam rises sharply with the increase of advancing speed, which is a high-risk area with bursts. According to the results of numerical simulation, it is considered that the relative suitable advancing speed of W1123 working face should be no more than 6.4 m/d on the premise of ensuring safe and efficient production. The research results provide scientific guidance for safe and efficient mining of rock burst prone mines in coal seams occur in close proximity
Study on Multisize Effect of Mining Influence of Advance Speed in Steeply Inclined Extrathick Coal Seam
AbstractAiming at the multisize effect of mining in steeply inclined extrathick coal seam, taking the fully mechanized top-coal caving mining in B3+6 coal seam +425 level in the south of Wudong coal mine as the background, this paper studies the mining stress evolution law under the influence of advancing speed, analyzes the mechanical characteristics of coal samples under the mining action of steeply inclined extrathick coal seam, and completes the multisize effect study of mining in steeply inclined extrathick coal seam. The results show that the stress change theory of fully mechanized top-coal caving mining in steeply inclined seam is deduced, and the loading and unloading stress of fully mechanized top-coal caving mining is positively correlated with the advancing speed of the working face. The numerical simulation experiment shows that the ideal advancing condition increases with the advancing speed of the working face, and the cyclic loading and unloading amplitude under the mining stress path increases, the cyclic times decrease, the main influence area increases, and the acting time decreases. The peak value of mining stress, the width of the plastic zone, and its elastic energy under high-speed propulsion are obviously larger. A method of mechanical behavior analysis of coal samples is proposed, which takes the mining stress path of the numerical simulation experiment as the indoor scale loading and unloading stress path of coal samples. The average compressive strength of coal samples under the mining stress path increases with the advancing speed of the working face, and the damage degree of coal samples increases with the advancing speed of different stress paths. The input strain energy of coal cyclic loading and unloading increases with the increase in the advancing speed of the stress path. The input strain energy of the coal sample has obvious linear relationship with the advancing speed of different paths. The research results can be used for reference in the study of multisize effect of mining impact of advancing speed
Identifying PLAUR as a Pivotal Gene of Tumor Microenvironment and Regulating Mesenchymal Phenotype of Glioblastoma
The mesenchymal (MES) phenotype of glioblastoma (GBM) is the most aggressive and therapy-resistant subtype of GBM. The MES phenotype transition during tumor progression results from both tumor-intrinsic genetic alterations and tumor-extrinsic microenvironmental factors. In this study, we sought to identify genes that can modulate the MES phenotype via both mechanisms. By integrating weighted gene co-expression network analysis (WGCNA) and the differential expression analysis of hypoxia-immunosuppression-related genes, we identified the plasminogen activator, urokinase receptor (PLAUR) as the hub gene. Functional enrichment analysis and GSVA analysis demonstrated that PLAUR was associated with the MES phenotype of glioma and the hypoxia-immunosuppression-related microenvironmental components. Single-cell sequencing analysis revealed that PLAUR mediated the ligand–receptor interaction between tumor-associated macrophages (TAMs) and glioma cells. Functional experiments in vitro with cell lines or primary glioma cells and xenograft models using BALB/c nude mice confirmed the role of PLAUR in promoting the MES phenotype of GBM. Our findings indicate that PLAUR regulates both glioma cells and tumor cell-extrinsic factors that favor the MES phenotype and suggest that PLAUR might be a potential target for GBM therapy
TRIM25 promotes glioblastoma cell growth and invasion via regulation of the PRMT1/c-MYC pathway by targeting the splicing factor NONO
Abstract Background Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. Methods Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. Results We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. Conclusions Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM