5 research outputs found

    Estimating soil moisture using Sentinel-1 and Sentinel-2 sensors for dryland and palustrine wetland areas

    No full text
    Soil moisture content (SMC) plays an important role in the hydrological functioning of wetlands. Remote sensing shows potential for the quantification and monitoring of the SMC of palustrine wetlands; however, this technique remains to be assessed across a wetland–terrestrial gradient in South Africa. The ability of the Sentinel Synthetic Aperture Radar (SAR) and optical sensors, which are freely available from the European Space Agency, were evaluated to predict SMC for a palustrine wetland and surrounding terrestrial areas in the grassland biome of South Africa. The percentage of volumetric water content (%VWC) was measured across the wetland and terrestrial areas of the Colbyn Wetland Nature Reserve, located in the City of Tshwane Metropolitan Municipality of the Gauteng Province, using a handheld SMT-100 soil moisture meter at a depth of 5 cm during the peak and end of the hydroperiod in 2018. The %VWC was regressed against the Sentinel imagery, using random forest, simple linear and support vector machine regression models. Random forest yielded the highest prediction accuracies in comparison to the other models. The results indicate that the Sentinel images have the potential to be used to predict SMC with a high coefficient of determination (Sentinel-1 SAR = R²>0.9; Sentinel-2 optical = R²>0.9) and a relatively low root mean square error (Sentinel-1 RMSE =<17%; Sentinel-2 optical = RMSE <21%). Predicted maps show higher ranges of SMC for wetlands (> 50%VWC; p<0.05) compared to terrestrial areas, and therefore SMC monitoring may benefit the inventorying of wetlands, as well as monitoring of their extent and ecological condition. Significance: The freely available and space-borne Sentinel sensors show potential for the quantification of surface soil moisture across a wetland–terrestrial gradient. Significant differences between the surface soil moisture of palustrine wetlands and terrestrial areas, imply that inventorying and monitoring of the extent and hydroperiod of palustrine wetlands can potentially be done

    Estimating soil moisture using Sentinel-1 and Sentinel-2 sensors for dryland and palustrine wetland areasa

    No full text
    Soil moisture content (SMC) plays an important role in the hydrological functioning of wetlands. Remote sensing shows potential for the quantification and monitoring of the SMC of palustrine wetlands; however, this technique remains to be assessed across a wetland–terrestrial gradient in South Africa. The ability of the Sentinel Synthetic Aperture Radar (SAR) and optical sensors, which are freely available from the European Space Agency, were evaluated to predict SMC for a palustrine wetland and surrounding terrestrial areas in the grassland biome of South Africa. The percentage of volumetric water content (%VWC) was measured across the wetland and terrestrial areas of the Colbyn Wetland Nature Reserve, located in the City of Tshwane Metropolitan Municipality of the Gauteng Province, using a handheld SMT-100 soil moisture meter at a depth of 5 cm during the peak and end of the hydroperiod in 2018. The %VWC was regressed against the Sentinel imagery, using random forest, simple linear and support vector machine regression models. Random forest yielded the highest prediction accuracies in comparison to the other models. The results indicate that the Sentinel images have the potential to be used to predict SMC with a high coefficient of determination (Sentinel-1 SAR = R²>0.9; Sentinel-2 optical = R²>0.9) and a relatively low root mean square error (Sentinel-1 RMSE =<17%; Sentinel-2 optical = RMSE <21%). Predicted maps show higher ranges of SMC for wetlands (> 50%VWC; p<0.05) compared to terrestrial areas, and therefore SMC monitoring may benefit the inventorying of wetlands, as well as monitoring of their extent and ecological condition. Significance: The freely available and space-borne Sentinel sensors show potential for the quantification of surface soil moisture across a wetland–terrestrial gradient. Significant differences between the surface soil moisture of palustrine wetlands and terrestrial areas, imply that inventorying and monitoring of the extent and hydroperiod of palustrine wetlands can potentially be done

    Estimating above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland biome of South Africa

    No full text
    Wetlands store higher carbon content relative to other terrestrial ecosystems, despite the small extent they occupy. The increase in temperature and changes in rainfall pattern may negatively affect their extent and condition, and thus the process of carbon accumulation in wetlands. The introduction of the Sentinel series (S1 and S2) and WorldView space-borne sensors (WV3) have enabled monitoring of herbaceous above ground biomass (AGB) in small and narrow wetlands in semi-arid areas. The objective of this study was to assess (i) the capabilities of the high to moderate resolution sensors such as WV3, S1A and S2A in estimating herbaceous AGB of vegetated wetlands using SAR backscatter, optical reflectance bands, vegetation spectral indices (including Leaf Area Index or LAI measurements) and band ratio datasets and (ii) whether significant differences exists between the AGB ranges of wetland and surrounding dryland vegetation. A bootstrapped Random Forest modelling approach, with variable importance selection, was utilised which incorporated ground collected grass AGB for model calibration and validation. WorldView-3 (WV3) yielded the highest AGB prediction accuracies (R2 = 0.63 and RMSE = 169.28 g/m2) regardless of the incorporation of bands only, indices only or the combination of bands and indices. In general, the optical sensors yielded higher modelling accuracies (improvement in R2 of 0.04-0.07 and RMSE of 11.48–17.28 g/m2) than the single Synthetic Aperture Radar (SAR) sensor but this was marginal depending on the scenario. Incorporating Sentinel 1A (S1) dual polarisation channels and Sentinel 2A (S2) reflectance bands, in particular, yielded higher accuracies (improvement in R2 of 0.03–0.04 and RMSE of 5.4–16.88 g/m2) than the use of individual sensors alone and was also equivalent to the performance of the high resolution WV3 sensor results. Wetlands had significantly higher AGB compared to the surrounding terrestrial grassland (with a mean of about 80 g/m2 more). Monitoring herbaceous AGB at the scale of the wetland extent in semi-arid to arid grasslands enables improved understanding of their carbon sequestration potential, the contributions to global carbon accounting policies and also serving as a proxy for functional intactness.The Water Research Commission (WRC) under the project K5/2545 “Establishing remote sensing toolkits for monitoring freshwater ecosystems under global change” as well as the Council for Scientific and Industrial Research (CSIR) by the project titled “Common Multi-Domain Development Platform (CMDP) to Realise National Value of the Sentinel Sensors for various land, freshwater and marine societal benefit areas”.http://www.elsevier.com/locate/jag2020-06-01hj2019Geography, Geoinformatics and Meteorolog

    National Wetland Map 5: An improved spatial extent and representation of inland aquatic and estuarine ecosystems in South Africa

    Get PDF
    The improved representation of freshwater and estuarine ecosystems and associated data was a key component of the 2018 National Biodiversity Assessment, and is an essential step in enhancing defensible land use planning and decision making. This paper reports on the enhancement of the National Wetland Map (NWM) version 5 for South Africa and other data layers associated with the South African Inventory of Inland Aquatic Ecosystems. Detail is provided on (i) the extent of wetlands mapped in NWM5, compared to previous versions of the NWMs; (ii) the improved extent of inland wetlands mapped in focus areas in NWM5 relative to NWM4; (iii) the type of cover associated with the wetlands (inundated, vegetated or arid); (iv) the ecotone between rivers and estuaries; and (v) level of confidence for the inland wetlands in terms of how well the extent and hydrogeomorphic units were captured for each sub-quaternary catchment of South Africa. A total of 4 596 509 ha (3.8% of South Africa) of inland aquatic ecosystems and artificial wetlands have now been mapped, with NWM5 delineating 23% more inland wetlands (2 650 509 ha or 2.2% of SA) compared with NWM4. The estuarine functional zone, which encapsulates all estuarine processes, and associated habitats and biota, was refined for 290 systems totalling 200 739 ha, with the addition of 42 micro-estuaries totalling 340 ha. Nearly 600 000 ha (0.5% of SA) of artificial wetlands were mapped in SA. Inland wetlands are predominantly palustrine (55%), with some arid (34%) and a few inundated systems (11%). Ecotones between rivers and estuaries, ecotones where biota and processes continuously vary from freshwater to estuarine, formed a small fraction (<1.5%) of river total extent (164 018 km). Most inland wetlands (~70%) had a low confidence ranking for designation of extent and typing, because they were not mapped by a wetland specialist and not verified in the field. Future improvements of the map should be focused on catchment-based improvements, particularly in strategic water-source areas, areas of high development pressure and those with low confidence designation
    corecore