11 research outputs found

    A gene-specific non-enhancer sequence is critical for expression from the promoter of the small heat shock protein gene αB-crystallin

    Get PDF
    BACKGROUND: Deciphering of the information content of eukaryotic promoters has remained confined to universal landmarks and conserved sequence elements such as enhancers and transcription factor binding motifs, which are considered sufficient for gene activation and regulation. Gene-specific sequences, interspersed between the canonical transacting factor binding sites or adjoining them within a promoter, are generally taken to be devoid of any regulatory information and have therefore been largely ignored. An unanswered question therefore is, do gene-specific sequences within a eukaryotic promoter have a role in gene activation? Here, we present an exhaustive experimental analysis of a gene-specific sequence adjoining the heat shock element (HSE) in the proximal promoter of the small heat shock protein gene, αB-crystallin (cryab). These sequences are highly conserved between the rodents and the humans. RESULTS: Using human retinal pigment epithelial cells in culture as the host, we have identified a 10-bp gene-specific promoter sequence (GPS), which, unlike an enhancer, controls expression from the promoter of this gene, only when in appropriate position and orientation. Notably, the data suggests that GPS in comparison with the HSE works in a context-independent fashion. Additionally, when moved upstream, about a nucleosome length of DNA (−154 bp) from the transcription start site (TSS), the activity of the promoter is markedly inhibited, suggesting its involvement in local promoter access. Importantly, we demonstrate that deletion of the GPS results in complete loss of cryab promoter activity in transgenic mice. CONCLUSIONS: These data suggest that gene-specific sequences such as the GPS, identified here, may have critical roles in regulating gene-specific activity from eukaryotic promoters

    Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture*

    No full text
    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes

    Spatial Analysis of Single Fiber Cells of the Developing Ocular Lens Reveals Regulated Heterogeneity of Gene Expression

    No full text
    Summary: The developing eye lens presents an exceptional paradigm for spatial transcriptomics. It is composed of highly organized long, slender transparent fiber cells, which differentiate from the edges of the anterior epithelium of the lens (equator), attended by high expression of crystallins, which generates transparency. Every fiber cell, therefore, is an optical unit whose refractive properties derive from its gene activity. Here, we probe this tangible relationship between the gene activity and the phenotype by studying the expression of all known 17 crystallins and 77 other non-crystallin genes in single fiber cells isolated from three states/regions of differentiation, allowing us to follow molecular progression at the single-cell level. The data demonstrate highly variable gene activity in cortical fibers, interposed between the nascent and the terminally differentiated fiber cell transcription. These data suggest that the so-called stochastic, highly heterogeneous gene activity is a regulated intermediate in the realization of a functional phenotype. : Cell Biology; Developmental Biology; Omics; Biological Sciences Research Methodologies Subject Areas: Cell Biology, Developmental Biology, Omics, Biological Sciences Research Methodologie
    corecore