6 research outputs found

    Using economic evaluations to support acupuncture reimbursement decisions: current evidence and gaps

    Full text link
    Hongchao Li and colleagues explore the global challenges of including economic evaluations in decisions about reimbursement for acupunctur

    Isolation, structural, biological activity and application of Gleditsia species seeds galactomannans

    No full text
    Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.</p

    Mechanisms for the circulation of influenza A(H3N2) in China: A spatiotemporal modelling study.

    No full text
    Circulation of seasonal influenza is the product of complex interplay among multiple drivers, yet characterizing the underlying mechanism remains challenging. Leveraging the diverse seasonality of A(H3N2) virus and abundant climatic space across regions in China, we quantitatively investigated the relative importance of population susceptibility, climatic factors, and antigenic change on the dynamics of influenza A(H3N2) through an integrative modelling framework. Specifically, an absolute humidity driven multiscale transmission model was constructed for the 2013/2014, 2014/2015 and 2016/2017 influenza seasons that were dominated by influenza A(H3N2). We revealed the variable impact of absolute humidity on influenza transmission and differences in the occurring timing and magnitude of antigenic change for those three seasons. Overall, the initial population susceptibility, climatic factors, and antigenic change explained nearly 55% of variations in the dynamics of influenza A(H3N2). Specifically, the additional variation explained by the initial population susceptibility, climatic factors, and antigenic change were at 33%, 26%, and 48%, respectively. The vaccination program alone failed to fully eliminate the summer epidemics of influenza A(H3N2) and non-pharmacological interventions were needed to suppress the summer circulation. The quantitative understanding of the interplay among driving factors on the circulation of influenza A(H3N2) highlights the importance of simultaneous monitoring of fluctuations for related factors, which is crucial for precise and targeted prevention and control of seasonal influenza

    Transmission Patterns of Seasonal Influenza in China between 2010 and 2018

    No full text
    Background Understanding the transmission source, pattern, and mechanism of infectious diseases is essential for targeted prevention and control. Though it has been studied for many years, the detailed transmission patterns and drivers for the seasonal influenza epidemics in China remain elusive. Methods In this study, utilizing a suite of epidemiological and genetic approaches, we analyzed the updated province-level weekly influenza surveillance, sequence, climate, and demographic data between 1 April 2010 and 31 March 2018 from continental China, to characterize detailed transmission patterns and explore the potential initiating region and drivers of the seasonal influenza epidemics in China. Results An annual cycle for influenza A(H1N1)pdm09 and B and a semi-annual cycle for influenza A(H3N2) were confirmed. Overall, the seasonal influenza A(H3N2) virus caused more infection in China and dominated the summer season in the south. The summer season epidemics in southern China were likely initiated in the &ldquo;Lingnan&rdquo; region, which includes the three most southern provinces of Hainan, Guangxi, and Guangdong. Additionally, the regions in the south play more important seeding roles in maintaining the circulation of seasonal influenza in China. Though intense human mobility plays a role in the province-level transmission of influenza epidemics on a temporal scale, climate factors drive the spread of influenza epidemics on both the spatial and temporal scales. Conclusion The surveillance of seasonal influenza in the south, especially the &ldquo;Lingnan&rdquo; region in the summer, should be strengthened. More broadly, both the socioeconomic and climate factors contribute to the transmission of seasonal influenza in China. The patterns and mechanisms revealed in this study shed light on the precise forecasting, prevention, and control of seasonal influenza in China and worldwide

    Gender differences in lipid goal attainment among Chinese patients with coronary heart disease: insights from the DYSlipidemia International Study of China

    No full text
    corecore