11 research outputs found

    Evaluation of a new serological test for syphilis based on chemiluminescence assay in a tertiary care hospital

    No full text
    Context: Syphilis is a transfusion transmissible infections and it is mandatory to do serological test for syphilis (STS) on all donor blood samples. STS is usually based on detection of antibodies against the cardiolipin-lecithin antigen or against the Treponema-specific antigen. STS with good sensitivity and specificity helps enhance blood safety and consolidation of STS along with other transfusion transmittable infections such as human immunodeficiency virus, hepatitis-C virus, and hepatitis-B virus helps in reducing the errors and enhances efficiency. Aims: This study was designed to evaluate the performance of newly introduced VITROS ® syphilis Treponema pallidum agglutination (TPA) assay based on enhanced chemiluminescence principle for its analytical performance for use as a STS on donor blood samples at a tertiary care health center in National Capital Region, India. Materials and Methods: A total of 108 random blood units collected from the donors (both voluntary and replacement donors) and 28 known syphilis sero-reactive samples stored at −20°C, were used to evaluate the performance of VITROS ® syphilis TPA assay based on enhanced chemiluminescence assay on VITROS ® ECiQ immunodiagnostics system along with its analytical performance in terms of its sensitivity, precision, cross-reactivity and interference studies. Results: VITROS ® syphilis TPA showed 100% sensitivity and specificity with precision (20 days study) of <10% co-efficient of variation. There was no cross-reactivity with other viral and auto-immune antibodies. No interference was observed from endogenous interfering substances like free hemoglobin or fats. Conclusions: Performance of the VITROS ® syphilis TPA assay meets the requirements for its use as STS in blood bank, thus allowing consolidation with other transfusion transmittable infections screening assay on chemiluminescence platform, which is highly valuable for optimizing workflow and efficiency

    Pretreatment and enzymatic hydrolysis of lignocellulosic biomass for reducing sugar production

    No full text
    Conversion of lignocellulosic biomass into reducing sugar has contributed to an alternative use of lignocellulose source, especially in the production of value-added products such as amino acids, biofuels, and vitamins. In the bioconversion process, pretreatment of lignocellulosic biomass is important to enhance the accessibility of enzyme hydrolysis, thus increasing the yield of reducing sugar. Lignocellulosic biomass has a very complex arrangement of structure that needs a proper study in pretreatment and enzymatic hydrolysis process to obtain an optimum yield of reducing sugar. This chapter discusses chemical and enzymatic pretreatment methods that are commonly applied to effectively modify the chemical structures of lignocellulosic biomass. Acid pretreatment using dilute sulfuric acid (H2SO4) is the most commonly employed for chemical pretreatment while sodium hydroxide (NaOH) is the most commonly applied for alkaline pretreatment because of its ability to delignify biomass. Then, enzymatic hydrolysis of lignocellulosic biomass for the production of reducing sugar is discussed in detail. The kinetics and optimization of hydrolysis which are the key parameters that determine the yields of reducing sugar are also presented. The right pretreatment method combined with an efficient hydrolysis process will ensure successful conversion of lignocellulosic biomass into reducing sugar, thus providing a sustainable production of reducing sugar from biomass for various applications

    Tubulin-Interactive Natural Products as Anticancer Agents

    No full text

    Proceedings of International Technical Postgraduate Conference 2022

    No full text
    This conference proceedings contains articles on the various research ideas of the academic &amp; research communities presented at the International Technical Postgraduate Conference 2022 (TECH POST 2022) that was held at Universiti Malaya, Kuala Lumpur, Malaysia on 24-25 September 2022. TECH POST 2022 was organized by the Faculty of Engineering, Universiti Malaya. The theme of the conference is “Embracing Innovative Engineering Technologies Towards a Sustainable Future”.  TECH POST 2022 conference is intended to foster the dissemination of state-of-the-art research from five main disciplines of Engineering: Electrical Engineering, Biomedical Engineering, Civil Engineering, Mechanical Engineering, and Chemical Engineering. The objectives of TECH POST 2022 are to bring together innovative researchers from all engineering disciplines to a common forum, promote R&amp;D activities in Engineering, and promote the dissemination of scientific knowledge and research know-how between researchers, engineers, and students. Conference Title: International Technical Postgraduate Conference 2022Conference Acronym: TECH POST 2022Conference Date: 24-25 September 2022Conference Location: Faculty of Engineering, Universiti Malaya, Kuala Lumpur Malaysia (Hybrid Mode)Conference Organizers: Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
    corecore