71 research outputs found

    Oscillatory Network Dynamics in Perceptual Decision-Making

    Get PDF
    Synchronized oscillations of ensembles of neurons in the brain underlie human cognition and behaviors. Neuronal network oscillations can be described by the physics of coupled dynamical systems. This dissertation examines the dynamic network activities in two distinct neurocognitive networks, the salience network (SN) and the ventral temporal cortex-dorsolateral prefrontal cortex (VTC-DLPFC) network, during perceptual decision-making (PDM). The key nodes of the SN include the right anterior insula (rAI), left anterior insula (lAI), and dorsal anterior cingulate cortex (dACC) in the brain. When and how a sensory signal enters and organizes within the SN before reaching the central executive network including the prefrontal cortex has been a mystery. Second, prior studies also report that perception of visual objects (face and house) involves a network of the VTC—the fusiform face area (FFA) and para-hippocampal place area (PPA)—and the DLPFC. How sensory information enters and organizes within the VTC-DLPFC network is not well understood, in milliseconds time-scale of human’s perception and decision-making. We used clear and noisy face/house image categorization tasks and scalp electroencephalography (EEG) recordings to study the dynamics of these networks. We demonstrated that beta (13–30 Hz) oscillation bound the SN, became most active around 100 ms after the stimulus onset, the rAI acted as a main outflow hub within the SN, and the SN activities were negatively correlated with the difficult tasks. We also uncovered that the VTC-DLPFC network activities were mediated by beta (13-30 Hz) and gamma (30-100 Hz) oscillations. Beta activities were enhanced in the time frame 125-250 ms after stimulus onset, the VTC acted as main outflow hub, and network activities were negatively correlated with the difficult tasks. In contrast, gamma activities were elevated in the time frame 0-125 ms, the DLPFC acted as a main outflow hub, and network activities—specifically the FFA-PPA pair—were positively correlated with the difficult tasks. These findings significantly enhance our understanding of how sensory information enters and organizes within the SN and the VTC-DLPFC network, respectively in PDM

    Differential sphingosine-1-phosphate receptor-1 protein expression in the dorsolateral prefrontal cortex between schizophrenia Type 1 and Type 2

    Get PDF
    Understanding the etiology and treatment approaches in schizophrenia is challenged in part by the heterogeneity of this disorder. One encouraging progress is the growing evidence that there are subtypes of schizophrenia. Recen

    Two neuroanatomical signatures in schizophrenia: Expression strengths over the first 2 years of treatment and their relationships to neurodevelopmental compromise and antipsychotic treatment

    Get PDF
    BACKGROUND AND HYPOTHESIS: Two machine learning derived neuroanatomical signatures were recently described. Signature 1 is associated with widespread grey matter volume reductions and signature 2 with larger basal ganglia and internal capsule volumes. We hypothesized that they represent the neurodevelopmental and treatment-responsive components of schizophrenia respectively. STUDY DESIGN: We assessed the expression strength trajectories of these signatures and evaluated their relationships with indicators of neurodevelopmental compromise and with antipsychotic treatment effects in 83 previously minimally treated individuals with a first episode of a schizophrenia spectrum disorder who received standardized treatment and underwent comprehensive clinical, cognitive and neuroimaging assessments over 24 months. Ninety-six matched healthy case-controls were included. STUDY RESULTS: Linear mixed effect repeated measures models indicated that the patients had stronger expression of signature 1 than controls that remained stable over time and was not related to treatment. Stronger signature 1 expression showed trend associations with lower educational attainment, poorer sensory integration, and worse cognitive performance for working memory, verbal learning and reasoning and problem solving. The most striking finding was that signature 2 expression was similar for patients and controls at baseline but increased significantly with treatment in the patients. Greater increase in signature 2 expression was associated with larger reductions in PANSS total score and increases in BMI and not associated with neurodevelopmental indices. CONCLUSIONS: These findings provide supporting evidence for two distinct neuroanatomical signatures representing the neurodevelopmental and treatment-responsive components of schizophrenia

    PARP-1 regulates DNA repair factor availability.

    Get PDF
    PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance BRCA-ness . These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting

    Psychosis brain subtypes validated in first-episode cohorts and related to illness remission:results from the PHENOM consortium

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups—a ‘lower brain volume’ subgroup (SG1) and an ‘higher striatal volume’ subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership (‘None’), and mixed SG1 + SG2 subgroups (‘Mixed’). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of ‘lower brain volume’ in SG1 and ‘higher striatal volume’ (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.Supported by NIH grant R01MH112070 and the National Health and Medical Research Council (NHMRC) grant GA126980. Russel Shinohara was supported by the NIH grant R01M123550. RCG was supported by the NIH grant R01MH119219.Open Access funding enabled and organized by CAUL and its Member Institutions.Peer reviewe

    Psychosis brain subtypes validated in first-episode cohorts and related to illness remission: results from the PHENOM consortium

    Get PDF
    Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature

    Labour market deregulation in Fiji

    No full text
    • …
    corecore