3,231 research outputs found

    On Precoding for Constant K-User MIMO Gaussian Interference Channel with Finite Constellation Inputs

    Full text link
    This paper considers linear precoding for constant channel-coefficient KK-User MIMO Gaussian Interference Channel (MIMO GIC) where each transmitter-ii (Tx-ii), requires to send did_i independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution, to receiver-ii (Rx-ii) for i=1,2,,Ki=1,2,\cdots,K. We define the maximum rate achieved by Tx-ii using any linear precoder, when the interference channel-coefficients are zero, as the signal to noise ratio (SNR) tends to infinity to be the Constellation Constrained Saturation Capacity (CCSC) for Tx-ii. We derive a high SNR approximation for the rate achieved by Tx-ii when interference is treated as noise and this rate is given by the mutual information between Tx-ii and Rx-ii, denoted as I[Xi;Yi]I[X_i;Y_i]. A set of necessary and sufficient conditions on the precoders under which I[Xi;Yi]I[X_i;Y_i] tends to CCSC for Tx-ii is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Further, we propose gradient-ascent based algorithms to optimize the sum-rate achieved by precoding with finite constellation inputs and treating interference as noise. Simulation study using the proposed algorithms for a 3-user MIMO GIC with two antennas at each node with di=1d_i=1 for all ii, and with BPSK and QPSK inputs, show more than 0.1 bits/sec/Hz gain in the ergodic sum-rate over that yielded by precoders obtained from some known IA algorithms, at moderate SNRs.Comment: 15 pages, 9 figure

    Performance of distributed mechanisms for flow admission in wireless adhoc networks

    Full text link
    Given a wireless network where some pairs of communication links interfere with each other, we study sufficient conditions for determining whether a given set of minimum bandwidth quality-of-service (QoS) requirements can be satisfied. We are especially interested in algorithms which have low communication overhead and low processing complexity. The interference in the network is modeled using a conflict graph whose vertices correspond to the communication links in the network. Two links are adjacent in this graph if and only if they interfere with each other due to being in the same vicinity and hence cannot be simultaneously active. The problem of scheduling the transmission of the various links is then essentially a fractional, weighted vertex coloring problem, for which upper bounds on the fractional chromatic number are sought using only localized information. We recall some distributed algorithms for this problem, and then assess their worst-case performance. Our results on this fundamental problem imply that for some well known classes of networks and interference models, the performance of these distributed algorithms is within a bounded factor away from that of an optimal, centralized algorithm. The performance bounds are simple expressions in terms of graph invariants. It is seen that the induced star number of a network plays an important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378

    Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures

    Full text link
    Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at.%. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to map out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.Comment: 22 pages, 6 figures, submitted to JA

    A Composite Method for Human Foot Structural Modeling

    Get PDF
    © 2015 The Authors A novel method including range-sensing scanning with texture and foot anatomical structure morphing basing on OpenSim is proposed. Palpation of important anatomical landmarks on foot surface was conducted by a physical therapist, and a range-sensing device, Microsoft Kinect sensor, was adopted for the 3D textured model acquisition. 3D coordinate data of the landmarks were measured and harnessed in OpenSim for subject-specific skeletal scaling based on a generic foot musculoskeletal model. The muscle attachment point coordinates derived from an anatomy database basing on sampling from East Asia people were used for muscle modelling. Then the 3D textured foot surface was registered with the morphed anatomical structures so that an integrated foot model was generated. The surface landmark locations were then compared with the corresponding internal bony sites and the errors were calculated to evaluate the accuracy and validity of this method. The potential error sources such as soft tissue thickness and scaling error were also mentioned and discussed. This technique is useful to create individual anatomically accurate human digital models for product design and development

    Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Get PDF
    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings
    corecore