3,231 research outputs found
On Precoding for Constant K-User MIMO Gaussian Interference Channel with Finite Constellation Inputs
This paper considers linear precoding for constant channel-coefficient
-User MIMO Gaussian Interference Channel (MIMO GIC) where each
transmitter- (Tx-), requires to send independent complex symbols
per channel use that take values from fixed finite constellations with uniform
distribution, to receiver- (Rx-) for . We define the
maximum rate achieved by Tx- using any linear precoder, when the
interference channel-coefficients are zero, as the signal to noise ratio (SNR)
tends to infinity to be the Constellation Constrained Saturation Capacity
(CCSC) for Tx-. We derive a high SNR approximation for the rate achieved by
Tx- when interference is treated as noise and this rate is given by the
mutual information between Tx- and Rx-, denoted as . A set of
necessary and sufficient conditions on the precoders under which
tends to CCSC for Tx- is derived. Interestingly, the precoders designed for
interference alignment (IA) satisfy these necessary and sufficient conditions.
Further, we propose gradient-ascent based algorithms to optimize the sum-rate
achieved by precoding with finite constellation inputs and treating
interference as noise. Simulation study using the proposed algorithms for a
3-user MIMO GIC with two antennas at each node with for all , and
with BPSK and QPSK inputs, show more than 0.1 bits/sec/Hz gain in the ergodic
sum-rate over that yielded by precoders obtained from some known IA algorithms,
at moderate SNRs.Comment: 15 pages, 9 figure
Performance of distributed mechanisms for flow admission in wireless adhoc networks
Given a wireless network where some pairs of communication links interfere
with each other, we study sufficient conditions for determining whether a given
set of minimum bandwidth quality-of-service (QoS) requirements can be
satisfied. We are especially interested in algorithms which have low
communication overhead and low processing complexity. The interference in the
network is modeled using a conflict graph whose vertices correspond to the
communication links in the network. Two links are adjacent in this graph if and
only if they interfere with each other due to being in the same vicinity and
hence cannot be simultaneously active. The problem of scheduling the
transmission of the various links is then essentially a fractional, weighted
vertex coloring problem, for which upper bounds on the fractional chromatic
number are sought using only localized information. We recall some distributed
algorithms for this problem, and then assess their worst-case performance. Our
results on this fundamental problem imply that for some well known classes of
networks and interference models, the performance of these distributed
algorithms is within a bounded factor away from that of an optimal, centralized
algorithm. The performance bounds are simple expressions in terms of graph
invariants. It is seen that the induced star number of a network plays an
important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378
Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures
Boron implantation with in-situ dynamic annealing is used to produce highly
conductive sub-surface layers in type IIa (100) diamond plates for the search
of a superconducting phase transition. Here we demonstrate that high-fluence
MeV ion-implantation, at elevated temperatures avoids graphitization and can be
used to achieve doping densities of 6 at.%. In order to quantify the diamond
crystal damage associated with implantation Raman spectroscopy was performed,
demonstrating high temperature annealing recovers the lattice. Additionally,
low-temperature electronic transport measurements show evidence of charge
carrier densities close to the metal-insulator-transition. After electronic
characterization, secondary ion mass spectrometry was performed to map out the
ion profile of the implanted plates. The analysis shows close agreement with
the simulated ion-profile assuming scaling factors that take into account an
average change in diamond density due to device fabrication. Finally, the data
show that boron diffusion is negligible during the high temperature annealing
process.Comment: 22 pages, 6 figures, submitted to JA
A Composite Method for Human Foot Structural Modeling
© 2015 The Authors A novel method including range-sensing scanning with texture and foot anatomical structure morphing basing on OpenSim is proposed. Palpation of important anatomical landmarks on foot surface was conducted by a physical therapist, and a range-sensing device, Microsoft Kinect sensor, was adopted for the 3D textured model acquisition. 3D coordinate data of the landmarks were measured and harnessed in OpenSim for subject-specific skeletal scaling based on a generic foot musculoskeletal model. The muscle attachment point coordinates derived from an anatomy database basing on sampling from East Asia people were used for muscle modelling. Then the 3D textured foot surface was registered with the morphed anatomical structures so that an integrated foot model was generated. The surface landmark locations were then compared with the corresponding internal bony sites and the errors were calculated to evaluate the accuracy and validity of this method. The potential error sources such as soft tissue thickness and scaling error were also mentioned and discussed. This technique is useful to create individual anatomically accurate human digital models for product design and development
Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing
The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings
- …