31 research outputs found

    Comparative molecular docking analysis of essential oil constituents as elastase inhibitors

    Get PDF
    Elastase is a protease or proteolytic enzyme, responsible for the breakdown of protein. There are eight human genes encoding for elastase, of which Elastase-1 (CELA-1) and Elastase-2 (ELANE) has significant implications on human diseases. Elastase-1 is primarily expressed in skin keratinocytes and is regarded as the major cause for the blistering in bullous pemphigoid, which affects the skin. On the other hand, Elastase-2 (ELANE), is expressed in the azurophil granules of neutrophils, is responsible for pulmonary emphysema and cyclic hematopoiesis a rare genetic disorder. Elastase is also produced by bacteria such as Pseudomonas aeruginosa, and forms the virulent factor in human. The ingredients from essential natural oils were found to have wound healing effects on non-healing wounds that is interfered by elastase due to microbial infection. Essential oils such as citral, citronellal, geranial, geraniol, and thymol were screened for their inhibitory activity on elastase produced by neutrophil, skin, and Pseudomonas aeruginosa by docking and were analyzed for their subcutaneous ADMET properties by ADME – TOX – Web server

    Influence of photon beam energy on IMRT plan quality for radiotherapy of prostate cancer

    Get PDF
    BackgroundIntensity-modulated radiation therapy (IMRT) has been widely used for prostate cancer treatments. 6MV photon beams were found to be an effective energy choice for most IMRT cases. The use of high-energy photons raise concerns about increased leakage and secondary neutron dose for the patients.AimIn this work, the effect of beam energy on the quality of IMRT plans for prostate radiotherapy was systematically studied for competing IMRT plans optimized for delivery with either 6 or 10MV beams.Materials and MethodsA cohort of 20 prostate cases was selected for this study. All patients received full-course IMRT treatments to a dose of 79.2Gy to PTV in 44 fractions. For all of the cases we developed treatment plans using 6 MV and 10MV intensity-modulated beams with identical dose volume constraints.ResultsPercentage of doses received by the percentage volume of PTV was higher for 6MV photons compared to 10MV photons for 12 patients, less than or equal to 1% for 6 patients and 2.6%, 3.6% for the remaining 2 patients irrespective of the PTV volume. Percentage doses received by 15% of bladder volume were higher for 10 MV photons. Percentage doses received by 15% of rectum volume were also higher for 10 MV photons.ConclusionsSince there is no greater advantage from 10MV photons as compared with 6MV photons in large volume pelvic IMRT dosimetry and also 10MV photons lie on the threshold energy border for the induction of photo neutrons from the accelerator components, we recommend the use of 6MV photons for IMRT of prostate cancer to achieve better results in tumour control and acceptable probability of complication rate

    Binding Mode of CpG Oligodeoxynucleotides to Nanoparticles Regulates Bifurcated Cytokine induction via Toll-like Receptor 9

    Get PDF
    The interaction of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) with Toll-like receptor 9 (TLR9) activates the immune system. Multimeric class A CpG ODNs induce interferon-α (IFN-α) and, to a lesser extent, interleukin-6. By contrast, monomeric class B CpG ODNs induce interleukin-6 but not IFN-α. This difference suggests that the multimerization of CpG ODN molecules is a key factor in IFN-α induction. We multimerized class B CpG ODN2006x3-PD molecules that consist entirely of a phosphodiester backbone onto quantum dot silicon nanoparticles with various binding modes. Herein, we present the binding mode-dependent bifurcation of cytokine induction and discuss its possible mechanism of CpG ODN and TLR9 interaction. Our discoveries also suggest that nanoparticles play roles in not only delivery of CpG ODNs but also control of CpG ODN activity

    Insights into the Binding of 3-(1-Phenylsulfonyl-2-methylindol-3-ylcarbonyl) Propanoic Acid to Bovine Serum Albumin: Spectroscopy and Molecular Modelling Studies

    No full text
    Serum albumin is a globular protein which is most abundant in human that binds remarkably with wide range of drugs. A reliable prediction of protein and drug binding at the atomic level by optical spectroscopy and molecular modeling methods provides the basis for the design of new drug compounds. In the current study, A newly synthesized 3-(1-Phenylsulfonyl-2-methylindol-3- ylcarbonyl) propanoic acid (PA) which has a antifungal and anti bacterial effects also plays vital role for the nutrition, micro biome and physiology triangle. It has been reported that 90% of PA quantity is metabolized by the liver and the rest is transported into the peripheral blood, since PA has binding characteristics, understanding pharmacokinetic mechanism of the drug is important. In this regard, the binding of PA-Bovine Serum Albumin (BSA) was investigated by UV-Vis, fluorescence spectroscopy and molecular docking studies. From the experimental and modeling studies it is observed that PA could bind BSA through the hydrophobic force, and hydrogen bonding. The current study reveals that the optical spectroscopy and molecular modeling techniques could be effectively used to study the design of new drug and understanding their pharmacokinetics

    Mangrove-Mediated Green Synthesis of Silver Nanoparticles with High HIV-1 Reverse Transcriptase Inhibitory Potential

    No full text
    Nowadays, the interactions of metal nanoparticles with microorganisms and parasites of public health importance receive increasing attention due to their functional versatility and multipurpose effectiveness. In this research, green biosynthesis of antiviral silver nanomaterials was achieved allowing the reduction of Ag+ ions by the aqueous leaf extract of mangrove Rhizophora lamarckii. The reduction of metal ions to metallic nanosilver occurred readily in the aqueous solution and resulted in high density of extremely stable and crystalline silver nanoparticles, with mean size ranging from 12 to 28 nm. Green-fabricated silver nanoparticles exhibit high HIV type 1 reverse transcriptase inhibitory activity, even when tested at low doses. In vitro, the mangrove-fabricated silver nanoparticles showed an IC50 of 0.4 μg/ml on the HIV-1 RTase. Overall, our results highlighted the promising potential of mangrove-synthesized metal nanoparticles in the fight against HIV and other viruses of public health importance

    Treatment of oral leukoplakia with photodynamic therapy: A pilot study

    No full text
    Aim of the Study: Oral leukoplakia (OL) is the most common potentially malignant disorder that may transform into oral carcinoma. By treating leukoplakia in its incipient stage, the risk of occurrence of oral carcinoma can be prevented. In this aspect, photodynamic therapy (PDT) can serve as a useful treatment modality. The aim of the study is to treat patients with OL using PDT in which 5-aminolevulinic acid (ALA) is used as a photosensitizer. Materials and Methods: Five patients with OL were included in the study. They were treated with 10% ALA mediated PDT (light source: Xenon lamp, power: 0.1 W, wavelength: 630 ± 5 nm, total dose: 100 J/cm 2 per session) for 6-8 sessions. Follow-up was done for a period of 1 year. Results: One month (4 weeks) after ALA-PDT, the response was evaluated based on clinical examination. It was as follows: Complete response: Two patients; partial response: Two patients; and no response: One patient. There was no recurrence in any of the cases. Conclusion: There was satisfactory reduction in the size of the OL lesion without any side-effects. Thus, ALA mediated PDT seems to be a promising alternative for the treatment of OL

    Aegiceras corniculatum-Mediated Green Synthesis of Silver Nanoparticles: Biophysical Characterization and Cytotoxicity on Vero Cells

    No full text
    Nowadays, silver nanoparticles receive increasing attention in nanomedicine, due to their characteristics which allow numerous biological applications. In this study, a biofabrication protocol was formulated to synthesize silver nanoparticles using a mangrove extract of Aegiceras corniculatum. The bio-physical characterization of mangrove-fabricated silver nanoparticles were carried out using UV–vis spectrophotometry, FTIR spectroscopy, XRD analysis and HRTEM. In vitro cytotoxicity assays of mangrove fabricated silver nanoparticles was made in comparison with chemically synthesized silver nanoparticles on Vero cell lines. MTT assay was applied in order to investigate the cytotoxic nature of the mangrove fabricated and chemically synthesized silver nanoparticles. The concentration which caused 50 % cell death (CC50) was 18.79 ± 0.9 μg/mL in the cells treated with mangroves fabricated silver nanoparticles whereas chemically synthesized silver nanoparticles produced the same effect (i.e. 50 % cell death) at 8.96 ± 0.8 μg/mL. Results showed that the mangrove-fabricated silver nanoparticles was more biocompatible when compared with chemically synthesized silver nanoparticles, highlighting their promising potential as nanocarriers in pharmacology and nanomedicine
    corecore