105 research outputs found

    Transcriptome Sequencing Demonstrates that Human Papillomavirus Is Not Active in Cutaneous Squamous Cell Carcinoma

    Get PDF
    Ξ²-Human papillomavirus (Ξ²-HPV) DNA is present in some cutaneous squamous cell carcinomas (cuSCCs), but no mechanism of carcinogenesis has been determined. We used ultra-high-throughput sequencing of the cancer transcriptome to assess whether papillomavirus transcripts are present in these cancers. In all, 67 cuSCC samples were assayed for Ξ²-HPV DNA by PCR, and viral loads were measured with type-specific quantitative PCR. A total of 31 SCCs were selected for whole transcriptome sequencing. Transcriptome libraries were prepared in parallel from the HPV18-positive HeLa cervical cancer cell line and HPV16-positive primary cervical and periungual SCCs. Of the tumors, 30% (20/67) were positive for Ξ²-HPV DNA, but there was no difference in Ξ²-HPV viral load between tumor and normal tissue (P=0.310). Immunosuppression and age were significantly associated with higher viral load (P=0.016 for immunosuppression; P=0.0004 for age). Transcriptome sequencing failed to identify papillomavirus expression in any of the skin tumors. In contrast, HPV16 and HPV18 mRNA transcripts were readily identified in primary cervical and periungual cancers and HeLa cells. These data demonstrate that papillomavirus mRNA expression is not a factor in the maintenance of cuSCCs

    The complete genome of klassevirus – a novel picornavirus in pediatric stool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diarrhea kills 2 million children worldwide each year, yet an etiological agent is not found in approximately 30–50% of cases. Picornaviral genera such as enterovirus, kobuvirus, cosavirus, parechovirus, hepatovirus, teschovirus, and cardiovirus have all been found in human and animal diarrhea. Modern technologies, especially deep sequencing, allow rapid, high-throughput screening of clinical samples such as stool for new infectious agents associated with human disease.</p> <p>Results</p> <p>A pool of 141 pediatric gastroenteritis samples that were previously found to be negative for known diarrheal viruses was subjected to pyrosequencing. From a total of 937,935 sequence reads, a collection of 849 reads distantly related to Aichi virus were assembled and found to comprise 75% of a novel picornavirus genome. The complete genome was subsequently cloned and found to share 52.3% nucleotide pairwise identity and 38.9% amino acid identity to Aichi virus. The low level of sequence identity suggests a novel picornavirus genus which we have designated klassevirus. Blinded screening of 751 stool specimens from both symptomatic and asymptomatic individuals revealed a second positive case of klassevirus infection, which was subsequently found to be from the index case's 11-month old twin.</p> <p>Conclusion</p> <p>We report the discovery of human klassevirus 1, a member of a novel picornavirus genus, in stool from two infants from Northern California. Further characterization and epidemiological studies will be required to establish whether klasseviruses are significant causes of human infection.</p

    Complete genome sequence of an astrovirus identified in a domestic rabbit (\u3cem\u3eOryctolagus cuniculus\u3c/em\u3e) with gastroenteritis

    Get PDF
    A colony of domestic rabbits in Tennessee, USA, experienced a high-mortality (~90%) outbreak of enterocolitis. The clinical characteristics were one to six days of lethargy, bloating, and diarrhea, followed by death. Heavy intestinal coccidial load was a consistent finding as was mucoid enteropathy with cecal impaction. Preliminary analysis by electron microscopy revealed the presence of virus-like particles in the stool of one of the affected rabbits. Analysis using the Virochip, a viral detection microarray, suggested the presence of an astrovirus, and follow-up PCR and sequence determination revealed a previously uncharacterized member of that family. Metagenomic sequencing enabled the recovery of the complete viral genome, which contains the characteristic attributes of astrovirus genomes. Attempts to propagate the virus in tissue culture have yet to succeed. Although astroviruses cause gastroenteric disease in other mammals, the pathogenicity of this virus and the relationship to this outbreak remains to be determined. This study therefore defines a viral species and a potential rabbit pathogen

    Experimental induction of proventricular dilatation disease in cockatiels (Nymphicus hollandicus) inoculated with brain homogenates containing avian bornavirus 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proventricular dilatation disease (PDD) is a fatal disorder of psittacine birds worldwide. The disease is characterized by lymphoplasmacytic infiltration of the central and peripheral nervous systems, leading to gastrointestinal motility and/or central nervous system dysfunction. Recently, we detected a significant association between avian bornavirus (ABV) infection and clinical signs of PDD in psittacines. However, it remains unclear whether ABV infection actually causes PDD. To address this question, we examined the impact of ABV inoculation on the cockatiel (<it>Nymphicus hollandicus</it>).</p> <p>Results</p> <p>Five cockatiels were inoculated via multiple routes (intramuscular, intraocular, intranasal, and oral) with a brain homogenate derived from either a PDD(+) avian bornavirus 4 (ABV4) (+) case (n = 3 inoculees) or from a PDD(-) ABV(-) control (n = 2 inoculees). The control birds remained free of clinical or pathological signs of PDD, and tested ABV(-) by RT-PCR and immunohistochemistry (IHC). In contrast, all three cockatiels inoculated with ABV4(+) brain homogenate developed gross and microscopic PDD lesions, and two exhibited overt clinical signs. In numerous tissues, ABV RT-PCR and sequence analysis demonstrated the presence of ABV4 RNA nearly identical to that in the inoculum. ABV was detected in the central nervous system of the three ABV-inoculees by IHC. Pyrosequencing to investigate the viral flora in the ABV4(+) inoculum uncovered 7 unique reads sharing 73–100% nucleotide sequence identity with previously identified ABV sequences and 24 reads sharing 40–89% amino acid sequence identity with viruses in the <it>Retroviridae </it>and <it>Astroviridae </it>families. Of these candidate viral species, only ABV RNA was recovered from tissues of the inoculated birds.</p> <p>Conclusion</p> <p>In this study, the clinical and pathological manifestations of PDD were induced by inoculation of cockatiels with brain homogenates containing avian bornavirus 4. By using high throughput pyrosequencing an in-depth view of the viral content of the inoculum was achieved, revealing that of 3 candidate virus families detected, only the presence of ABV RNA correlated with the development of PDD. This study provides evidence of a causal association between ABV4 infection and PDD in cockatiels.</p

    Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: Identification of a candidate etiologic agent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proventricular dilatation disease (PDD) is a fatal disorder threatening domesticated and wild psittacine birds worldwide. It is characterized by lymphoplasmacytic infiltration of the ganglia of the central and peripheral nervous system, leading to central nervous system disorders as well as disordered enteric motility and associated wasting. For almost 40 years, a viral etiology for PDD has been suspected, but to date no candidate etiologic agent has been reproducibly linked to the disease.</p> <p>Results</p> <p>Analysis of 2 PDD case-control series collected independently on different continents using a pan-viral microarray revealed a bornavirus hybridization signature in 62.5% of the PDD cases (5/8) and none of the controls (0/8). Ultra high throughput sequencing was utilized to recover the complete viral genome sequence from one of the virus-positive PDD cases. This revealed a bornavirus-like genome organization for this agent with a high degree of sequence divergence from all prior bornavirus isolates. We propose the name avian bornavirus (ABV) for this agent. Further specific ABV PCR analysis of an additional set of independently collected PDD cases and controls yielded a significant difference in ABV detection rate among PDD cases (71%, n = 7) compared to controls (0%, n = 14) (P = 0.01; Fisher's Exact Test). Partial sequence analysis of a total of 16 ABV isolates we have now recovered from these and an additional set of cases reveals at least 5 distinct ABV genetic subgroups.</p> <p>Conclusion</p> <p>These studies clearly demonstrate the existence of an avian reservoir of remarkably diverse bornaviruses and provide a compelling candidate in the search for an etiologic agent of PDD.</p

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Praziquantel Facilitates IFN-Ξ³-Producing CD8+ T Cells (Tc1) and IL-17-Producing CD8+ T Cells (Tc17) Responses to DNA Vaccination in Mice

    Get PDF
    BACKGROUND: CD8(+) cytotoxic T lymphocytes (CTLs) are crucial for eliminating hepatitis B virus (HBV) infected cells. DNA vaccination, a novel therapeutic strategy for chronic virus infection, has been shown to induce CTL responses. However, accumulated data have shown that CTLs could not be effectively induced by HBV DNA vaccination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that praziquantel (PZQ), an anti-schistoma drug, could act as an adjuvant to overcome the lack of potent CTL responses by HBV DNA vaccination in mice. PZQ in combination with HBV DNA vaccination augmented the induction of CD8(+) T cell-dependent and HBV-specific delayed hypersensitivity responses (DTH) in C57BL/6 mice. Furthermore, the induced CD8(+) T cells consisted of both Tc1 and Tc17 subtypes. By using IFN-Ξ³ knockout (KO) mice and IL-17 KO mice, both cytokines were found to be involved in the DTH. The relevance of these findings to HBV immunization was established in HBsAg transgenic mice, in which PZQ also augmented the induction of HBV-specific Tc1 and Tc17 cells and resulted in reduction of HBsAg positive hepatocytes. Adoptive transfer experiments further showed that PZQ-primed CD8(+) T cells from wild type mice, but not the counterpart from IFN-Ξ³ KO or IL-17 KO mice, resulted in elimination of HBsAg positive hepatocytes. CONCLUSIONS/SIGNIFICANCE: Our results suggest that PZQ is an effective adjuvant to facilitate Tc1 and Tc17 responses to HBV DNA vaccination, inducing broad CD8(+) T cell-based immunotherapy that breaks tolerance to HBsAg

    The G1613A Mutation in the HBV Genome Affects HBeAg Expression and Viral Replication through Altered Core Promoter Activity

    Get PDF
    Infection of hepatitis B virus (HBV) causes acute and chronic hepatitis and is closely associated with the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we demonstrated that the G1613A mutation in the HBV negative regulatory element (NRE) is a hotspot mutation in HCC patients. In this study, we further investigated the functional consequences of this mutation in the context of the full length HBV genome and its replication. We showed that the G1613A mutation significantly suppresses the secretion of e antigen (HBeAg) and enhances the synthesis of viral DNA, which is in consistence to our clinical result that the G1613A mutation associates with high viral load in chronic HBV carriers. To further investigate the molecular mechanism of the mutation, we performed the electrophoretic mobility shift assay with the recombinant RFX1 protein, a trans-activator that was shown to interact with the NRE of HBV. Intriguingly, RFX1 binds to the G1613A mutant with higher affinity than the wild-type sequence, indicating that the mutation possesses the trans-activating effect to the core promoter via NRE. The trans-activating effect was further validated by the enhancement of the core promoter activity after overexpression of RFX1 in liver cell line. In summary, our results suggest the functional consequences of the hotspot G1613A mutation found in HBV. We also provide a possible molecular mechanism of this hotspot mutation to the increased viral load of HBV carriers, which increases the risk to HCC

    Epidemic History and Evolutionary Dynamics of Hepatitis B Virus Infection in Two Remote Communities in Rural Nigeria

    Get PDF
    BACKGROUND: In Nigeria, hepatitis B virus (HBV) infection has reached hyperendemic levels and its nature and origin have been described as a puzzle. In this study, we investigated the molecular epidemiology and epidemic history of HBV infection in two semi-isolated rural communities in North/Central Nigeria. It was expected that only a few, if any, HBV strains could have been introduced and effectively transmitted among these residents, reflecting limited contacts of these communities with the general population in the country. METHODS AND FINDINGS: Despite remoteness and isolation, approximately 11% of the entire population in these communities was HBV-DNA seropositive. Analyses of the S-gene sequences obtained from 55 HBV-seropositive individuals showed the circulation of 37 distinct HBV variants. These HBV isolates belong predominantly to genotype E (HBV/E) (n=53, 96.4%), with only 2 classified as sub-genotype A3 (HBV/A3). Phylogenetic analysis showed extensive intermixing between HBV/E variants identified in these communities and different countries in Africa. Quasispecies analysis of 22 HBV/E strains using end-point limiting-dilution real-time PCR, sequencing and median joining networks showed extensive intra-host heterogeneity and inter-host variant sharing. To investigate events that resulted in such remarkable HBV/E diversity, HBV full-size genome sequences were obtained from 47 HBV/E infected persons and P gene was subjected to Bayesian coalescent analysis. The time to the most recent common ancestor (tMRCA) for these HBV/E variants was estimated to be year 1952 (95% highest posterior density (95% HPD): 1927-1970). Using additional HBV/E sequences from other African countries, the tMRCA was estimated to be year 1948 (95% HPD: 1924-1966), indicating that HBV/E in these remote communities has a similar time of origin with multiple HBV/E variants broadly circulating in West/Central Africa. Phylogenetic analysis and statistical neutrality tests suggested rapid HBV/E population expansion. Additionally, skyline plot analysis showed an increase in the size of the HBV/E-infected population over the last approximately 30-40 years. CONCLUSIONS: Our data suggest a massive introduction and relatively recent HBV/E expansion in the human population in Africa. Collectively, these data show a significant shift in the HBV/E epidemic dynamics in Africa over the last century
    • …
    corecore