31 research outputs found

    Protective Role of Superoxide Dismutase against Diabetogenic Drugs

    Get PDF
    Copper-zinc superoxide dismutase (SOD) is present in relatively high concentrations in the β-cells of human islets. The activity of the extracted enzyme is partially inhibited upon incubation with the diabetogenic drugs alloxan, streptozotocin, or Vacor. The role of this enzyme in protecting β-cells against chemically induced diabetes was further investigated. Incubation of intact canine islets with alloxan (0.2 mg/ml) and 4 mM glucose decreased the insulin secretory response by 87% during subsequent exposure to 28 mM glucose. Concomitantly the SOD-specific activity (units of enzyme activity per milligram immunoreactive SOD) decreased 50% in alloxan-exposed islets. When islets were protected from alloxan toxicity by including 28 mM glucose with alloxan, the insulin secretory response and SOD specific activity remained identical to controls. Thus, SOD specific activity correlates with maintenance of β-cell function. To test the effectiveness of SOD against streptozotocin in vitro, canine islets were incubated 10 min with or without streptozotocin (0.1 mg/ml) with 4 mM glucose; their functional integrity was tested subsequently as the insulin secretory response to 28 mM glucose. Exposure to streptozotocin alone decreased the response by 70%; inclusion of SOD (1.5 mg/ml) before and during exposure to streptozotocin completely prevented this effect. Cyanide-inactivated SOD was not effective. The potential of SOD to prevent streptozotocin-induced diabetes was tested in rats in vivo. SOD injected 10 s or 50 min before streptozotocin prevented or significantly attenuated diabetes. Injection of SOD and streptozotocin simultaneously was much less effective, and cyanide-inactivated SOP was ineffective. No protection was afforded by injection of SOD 12 or 24 h before streptozotocin. Our results support hypotheses that (a) oxygen radicals mediate the β-cell toxicity of both alloxan and streptozotocin, and (b) β-cells may be particularly vulnerable to oxygen radical damage

    Protein Topology of Presenilin 1

    Get PDF
    AbstractMutations in a gene encoding a multitransmembrane protein, termed presenilin 1 (PS1), are causative in the majority of early-onset cases of AD. To determine the topology of PS1, we utilized two strategies: first, we tested whether putative transmembranes are sufficient to export a protease-sensitive substrate across a lipid bilayer; and second, we examined the binding of antibodies to specific PS1 epitopes in cultured cells selectively permeabilized with the pore-forming toxin, streptolysin-O. We document that the “loop,” N-terminal, and C-terminal domains of PS1 are oriented toward the cytoplasm

    Cortical complexity in world trade center responders with chronic posttraumatic stress disorder

    Get PDF
    Approximately 23% of World Trade Center (WTC) responders are experiencing chronic posttraumatic stress disorder (PTSD) associated with their exposures at the WTC following the terrorist attacks of 9/11/2001, which has been demonstrated to be a risk factor for cognitive impairment raising concerns regarding their brain health. Cortical complexity, as measured by analyzing Fractal Dimension (FD) from T1 MRI brain images, has been reported to be reduced in a variety of psychiatric and neurological conditions. In this report, we hypothesized that FD would be also reduced in a case-control sample of 99 WTC responders as a result of WTC-related PTSD. The results of our surface-based morphometry cluster analysis found alterations in vertex clusters of complexity in WTC responders with PTSD, with marked reductions in regions within the frontal, parietal, and temporal cortices, in addition to whole-brain absolute bilateral and unilateral complexity. Furthermore, region of interest analysis identified that the magnitude of changes in regional FD severity was associated with increased PTSD symptoms (reexperiencing, avoidance, hyperarousal, negative affect) severity. This study confirms prior findings on FD and psychiatric disorders and extends our understanding of FD associations with posttraumatic symptom severity. The complex and traumatic experiences that led to WTC-related PTSD were associated with reductions in cortical complexity. Future work is needed to determine whether reduced cortical complexity arose prior to, or concurrently with, onset of PTSD

    The Role of Presenilin and its Interacting Proteins in the Biogenesis of Alzheimer’s Beta Amyloid

    Get PDF
    The biogenesis and accumulation of the beta amyloid protein (Aβ) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer’s disease. The presenilins and its interacting proteins play a pivotal role in the generation of Aβ from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (γ-secretase) that cleaves APP to generate Aβ. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the γ-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of γ-secretase play important roles in modulating Aβ production. This review will discuss the components of the γ-secretase complex and the role of presenilin interacting proteins on γ-secretase activity

    Protective Role of Superoxide Dismutase against Diabetogenic Drugs

    Get PDF
    Copper-zinc superoxide dismutase (SOD) is present in relatively high concentrations in the β-cells of human islets. The activity of the extracted enzyme is partially inhibited upon incubation with the diabetogenic drugs alloxan, streptozotocin, or Vacor. The role of this enzyme in protecting β-cells against chemically induced diabetes was further investigated. Incubation of intact canine islets with alloxan (0.2 mg/ml) and 4 mM glucose decreased the insulin secretory response by 87% during subsequent exposure to 28 mM glucose. Concomitantly the SOD-specific activity (units of enzyme activity per milligram immunoreactive SOD) decreased 50% in alloxan-exposed islets. When islets were protected from alloxan toxicity by including 28 mM glucose with alloxan, the insulin secretory response and SOD specific activity remained identical to controls. Thus, SOD specific activity correlates with maintenance of β-cell function. To test the effectiveness of SOD against streptozotocin in vitro, canine islets were incubated 10 min with or without streptozotocin (0.1 mg/ml) with 4 mM glucose; their functional integrity was tested subsequently as the insulin secretory response to 28 mM glucose. Exposure to streptozotocin alone decreased the response by 70%; inclusion of SOD (1.5 mg/ml) before and during exposure to streptozotocin completely prevented this effect. Cyanide-inactivated SOD was not effective. The potential of SOD to prevent streptozotocin-induced diabetes was tested in rats in vivo. SOD injected 10 s or 50 min before streptozotocin prevented or significantly attenuated diabetes. Injection of SOD and streptozotocin simultaneously was much less effective, and cyanide-inactivated SOD was ineffective. No protection was afforded by injection of SOD 12 or 24 h before streptozotocin. Our results support hypotheses that (a) oxygen radicals mediate the β-cell toxicity of both alloxan and streptozotocin, and (b) β-cells may be particularly vulnerable to oxygen radical damage

    Dynamin 1 regulates amyloid generation through modulation of BACE-1.

    Get PDF
    BACKGROUND: Several lines of investigation support the notion that endocytosis is crucial for Alzheimer's disease (AD) pathogenesis. Substantial evidence have already been reported regarding the mechanisms underlying amyloid precursor protein (APP) traffic, but the regulation of beta-site APP-Cleaving Enzyme 1 (BACE-1) distribution among endosomes, TGN and plasma membrane remains unclear. Dynamin, an important adaptor protein that controls sorting of many molecules, has recently been associated with AD but its functions remain controversial. Here we studied possible roles for dynamin 1 (dyn1) in Aβ biogenesis. PRINCIPAL FINDINGS: We found that genetic perturbation of dyn1 reduces both secreted and intracellular Aβ levels in cell culture. There is a dramatic reduction in BACE-1 cleavage products of APP (sAPPβ and βCTF). Moreover, dyn1 knockdown (KD) leads to BACE-1 redistribution from the Golgi-TGN/endosome to the cell surface. There is an increase in the amount of surface holoAPP upon dyn1 KD, with resultant elevation of α-secretase cleavage products sAPPα and αCTF. But no changes are seen in the amount of nicastrin (NCT) or PS1 N-terminal fragment (NTF) at cell surface with dyn1 KD. Furthermore, treatment with a selective dynamin inhibitor Dynasore leads to similar reduction in βCTF and Aβ levels, comparable to changes with BACE inhibitor treatment. But combined inhibition of BACE-1 and dyn1 does not lead to further reduction in Aβ, suggesting that the Aβ-lowering effects of dynamin inhibition are mainly mediated through regulation of BACE-1 internalization. Aβ levels in dyn1(-/-) primary neurons, as well as in 3-month old dyn1 haploinsufficient animals with AD transgenic background are consistently reduced when compared to their wildtype counterparts. CONCLUSIONS: In summary, these data suggest a previously unknown mechanism by which dyn1 affects amyloid generation through regulation of BACE-1 subcellular localization and therefore its enzymatic activities

    Dynamin 1 (dyn1) knockdown of in N2a 695 cells reduces Aβ and βCTF levels.

    No full text
    <p>A) N2a 695 cells were treated with dyn1 or control siRNA for analysis of APP metabolism. Levels of media and intracellular Aβ, sAPPβ, βCTF and holoAPP were determined by immunoprecipitation with 4G8 or MAB348 followed by immunoblotting with 6E10 or sAPPβ antibody. Recombinant sAPPβ peptide was used as a positive control. Levels of β-actin were also determined. B) Protein levels were normalized to β-actin and expressed as percentage of control. Data were collected in duplicate or triplicate from three independent experiments. Significant reductions (**<i>p<</i>0.001) in Aβ, βCTF and sAPPβ (*<i>p<</i>0.05) were observed upon dyn1 knockdown, as compared to control. Levels of Aβ<sub>40</sub> and Aβ<sub>42</sub> in the media are determined by sandwich ELISA analysis (**<i>p</i><0.001).</p

    Dyn1 knockdown increases cell surface BACE-1 and holoAPP levels.

    No full text
    <p>A) Dyn KD fibroblast cells were treated with tamoxifen to induce dyn1 knockdown and then labeled with biotin followed by immunoprecipitation with streptavidin beads to pull down surface BACE-1. The amount of endogenous BACE-1 at cell surface was compared between control and dyn1 KD conditions. Total protein levels of endogenous BACE-1 were also determined from lysates as input. Protein levels were normalized to β-actin content and expressed as percentage of control. Data were collected in duplicate or triplicate from three independent experiments. Elevations in BACE-1 at cell surface (*<i>p<</i>0.05) without significant changes in total protein levels, were observed upon dyn1 KD. Cell lysates of BACE-1 expressing 293 cells were used as positive controls in these experiments. B) Alternatively, the amount of surface holoAPP was compared between control and DKO conditions. Elevations in holoAPP at cell surface (*<i>p<</i>0.05) without significant changes in total protein levels, were observed upon dyn1 KD. The sAPPα levels were determined in N2a 695 cells after dyn1 siRNA transfection, by immunoprecipitation with MAB348 followed by immunoblotting with 6E10 antibody. The levels of sAPPα was increased by 286.3% (<i>p</i> = 0.042) upon dyn1 KD.</p
    corecore