71 research outputs found

    A Framework for Monte Carlo based Multiple Testing

    Full text link
    We are concerned with a situation in which we would like to test multiple hypotheses with tests whose p-values cannot be computed explicitly but can be approximated using Monte Carlo simulation. This scenario occurs widely in practice. We are interested in obtaining the same rejections and non-rejections as the ones obtained if the p-values for all hypotheses had been available. The present article introduces a framework for this scenario by providing a generic algorithm for a general multiple testing procedure. We establish conditions which guarantee that the rejections and non-rejections obtained through Monte Carlo simulations are identical to the ones obtained with the p-values. Our framework is applicable to a general class of step-up and step-down procedures which includes many established multiple testing corrections such as the ones of Bonferroni, Holm, Sidak, Hochberg or Benjamini-Hochberg. Moreover, we show how to use our framework to improve algorithms available in the literature in such a way as to yield theoretical guarantees on their results. These modifications can easily be implemented in practice and lead to a particular way of reporting multiple testing results as three sets together with an error bound on their correctness, demonstrated exemplarily using a real biological dataset

    QuickMMCTest - Quick Multiple Monte Carlo Testing

    Get PDF
    Multiple hypothesis testing is widely used to evaluate scientific studies involving statistical tests. However, for many of these tests, p-values are not available and are thus often approximated using Monte Carlo tests such as permutation tests or bootstrap tests. This article presents a simple algorithm based on Thompson Sampling to test multiple hypotheses. It works with arbitrary multiple testing procedures, in particular with step-up and step-down procedures. Its main feature is to sequentially allocate Monte Carlo effort, generating more Monte Carlo samples for tests whose decisions are so far less certain. A simulation study demonstrates that for a low computational effort, the new approach yields a higher power and a higher degree of reproducibility of its results than previously suggested methods

    RMCMC: A System for Updating Bayesian Models

    Get PDF
    A system to update estimates from a sequence of probability distributions is presented. The aim of the system is to quickly produce estimates with a user-specified bound on the Monte Carlo error. The estimates are based upon weighted samples stored in a database. The stored samples are maintained such that the accuracy of the estimates and quality of the samples is satisfactory. This maintenance involves varying the number of samples in the database and updating their weights. New samples are generated, when required, by a Markov chain Monte Carlo algorithm. The system is demonstrated using a football league model that is used to predict the end of season table. Correctness of the estimates and their accuracy is shown in a simulation using a linear Gaussian model

    The chopthin algorithm for resampling

    Full text link
    Resampling is a standard step in particle filters and more generally sequential Monte Carlo methods. We present an algorithm, called chopthin, for resampling weighted particles. In contrast to standard resampling methods the algorithm does not produce a set of equally weighted particles; instead it merely enforces an upper bound on the ratio between the weights. Simulation studies show that the chopthin algorithm consistently outperforms standard resampling methods. The algorithms chops up particles with large weight and thins out particles with low weight, hence its name. It implicitly guarantees a lower bound on the effective sample size. The algorithm can be implemented efficiently, making it practically useful. We show that the expected computational effort is linear in the number of particles. Implementations for C++, R (on CRAN), Python and Matlab are available.Comment: 14 pages, 4 figure

    An algorithm to compute the power of Monte Carlo tests with guaranteed precision

    Full text link
    This article presents an algorithm that generates a conservative confidence interval of a specified length and coverage probability for the power of a Monte Carlo test (such as a bootstrap or permutation test). It is the first method that achieves this aim for almost any Monte Carlo test. Previous research has focused on obtaining as accurate a result as possible for a fixed computational effort, without providing a guaranteed precision in the above sense. The algorithm we propose does not have a fixed effort and runs until a confidence interval with a user-specified length and coverage probability can be constructed. We show that the expected effort required by the algorithm is finite in most cases of practical interest, including situations where the distribution of the p-value is absolutely continuous or discrete with finite support. The algorithm is implemented in the R-package simctest, available on CRAN.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1076 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore