4 research outputs found

    An Investigation of the Policies and Crucial Sectors of Smart Cities Based on IoT Application

    Get PDF
    As smart cities (SCs) emerge, the Internet of Things (IoT) is able to simplify more sophisticated and ubiquitous applications employed within these cities. In this regard, we investigate seven predominant sectors including the environment, public transport, utilities, street lighting, waste management, public safety, and smart parking that have a great effect on SC development. Our findings show that for the environment sector, cleaner air and water systems connected to IoT-driven sensors are used to detect the amount of CO2, sulfur oxides, and nitrogen to monitor air quality and to detect water leakage and pH levels. For public transport, IoT systems help traffic management and prevent train delays, for the utilities sector IoT systems are used for reducing overall bills and related costs as well as electricity consumption management. For the street-lighting sector, IoT systems are used for better control of streetlamps and saving energy associated with urban street lighting. For waste management, IoT systems for waste collection and gathering of data regarding the level of waste in the container are effective. In addition, for public safety these systems are important in order to prevent vehicle theft and smartphone loss and to enhance public safety. Finally, IoT systems are effective in reducing congestion in cities and helping drivers to find vacant parking spots using intelligent smart parking

    Unveiling the potential of an evolutionary approach for accurate compressive strength prediction of engineered cementitious composites

    No full text
    The different human activities in numerous fields of civil engineering have become possible due to recent development in soft computing. As many researchers have widely extended the use of evolutionary numerical methods to predict the mechanical properties of construction materials, it has become necessary to investigate the performance, accuracy, and robustness of these approaches. Gene Expression Programming (GEP) is a method that stands out among these methods as it can generate highly accurate formulas. In this study, two models of GEP are used to anticipate the compressive strength of engineered cementitious composite (ECC) containing fly ash (FA) and polyvinyl alcohol (PVA) fiber at 28 days. The experimental results for 76 specimens, which are made with ten different mixture properties, are taken from the literature to build the models. Considering the experimental results, four different input variables in the GEP approach are used to arrange the models in two modes: sorted data distribution (SDD) and random data distribution (RDD). Prognosticating the compressive strength values based on the mechanical properties of ECC containing FA and PVA will be possible for the models of the GEP method by using these input variables. The comparison between the experimental results and the results of training, testing, and validation sets of two models (GEP-I and GEP-II), each of which has two distinct distribution modes, is done. It is observed that both modes of RDD and SDD lead to responses with the same accuracy (R-square more than 0.9). Nevertheless, the GEP-I (SDD) model was chosen as the best model in this study based on its performance with the validation data set

    A Simple Modelling Approach for Prediction of Standard State Real Gas Entropy of Pure Materials

    No full text
    The performance of an energy conversion system depends on exergy analysis and entropy generation minimisation. A new simple four-parameter equation is presented in this paper to predict the standard state absolute entropy of real gases (SSTD). The model development and validation were accomplished using the Linear Genetic Programming (LGP) method and a comprehensive dataset of 1727 widely used materials. The proposed model was compared with the results obtained using a three-layer feed forward neural network model (FFNN model). The root-mean-square error (RMSE) and the coefficient of determination (r(2)) of all data obtained for the LGP model were 52.24 J/(mol K) and 0.885, respectively. Several statistical assessments were used to evaluate the predictive power of the model. In addition, this study provides an appropriate understanding of the most important molecular variables for exergy analysis. Compared with the LGP based model, the application of FFNN improved the r(2) to 0.914. The developed model is useful in the design of materials to achieve a desired entropy value

    An Investigation of the Policies and Crucial Sectors of Smart Cities Based on IoT Application

    No full text
    As smart cities (SCs) emerge, the Internet of Things (IoT) is able to simplify more sophisticated and ubiquitous applications employed within these cities. In this regard, we investigate seven predominant sectors including the environment, public transport, utilities, street lighting, waste management, public safety, and smart parking that have a great effect on SC development. Our findings show that for the environment sector, cleaner air and water systems connected to IoT-driven sensors are used to detect the amount of CO2, sulfur oxides, and nitrogen to monitor air quality and to detect water leakage and pH levels. For public transport, IoT systems help traffic management and prevent train delays, for the utilities sector IoT systems are used for reducing overall bills and related costs as well as electricity consumption management. For the street-lighting sector, IoT systems are used for better control of streetlamps and saving energy associated with urban street lighting. For waste management, IoT systems for waste collection and gathering of data regarding the level of waste in the container are effective. In addition, for public safety these systems are important in order to prevent vehicle theft and smartphone loss and to enhance public safety. Finally, IoT systems are effective in reducing congestion in cities and helping drivers to find vacant parking spots using intelligent smart parking
    corecore