41 research outputs found

    Leaf response to water deficits in soybeans

    Get PDF
    Soybeans [Glycine max (L.) Merrill cv. Wayne] plants were subjected to an extended drying cycle in the field to investigate the leaf sensitivity to water deficits. Soybeans in irrigated plots were superior to those in non-irrigated plots in the average size and number of leaflets per plant. Apparent differences in the leaf area distributions in the canopy seemed to be mediated by moisture stress effects associated with leaf senescence and light penetration in the lower depths of the canopy. A major decrease in leaf enlargement occurred near a leaf-water potential of -8 bars, and at - 12 bars, the growth was completely halted. Similar decreases were observed at a stomatal conductance of 0.4 cm/s and at 0.2 cm/s no enlargement was observe

    Water Vapor Sorption by the Walls and Sensors of Stomatal Diffusion Porometers 1

    No full text

    Dose‐ and time‐dependent effects of an immune challenge on fish across biological levels

    No full text
    Abstract Due to global changes, fish are increasingly exposed to immune challenges associated with disease outbreaks in aquatic ecosystems. Adjustments in physiology and behavior are generally critical to maintaining homeostasis after an immune challenge, but there is limited knowledge on the specific thresholds and dynamics of responses across levels of biological organization in fish. In this study, we tested how different concentrations of an antigens mixture (phytohemagglutinin and lipopolysaccharide) affected innate immunity with potential consequences on oxidative stress, energy reserves, body condition, and behavior across time, using the common gudgeon ( Gobio sp.) as model species. The immune challenge induced a transitory increase in lytic enzyme activity (i.e., lysozyme) and local immune response (i.e., skin swelling) 2 days after the antigen injection. The available energy stored in muscle was also reduced 4 days after injection, without inducing oxidative stress at the cellular level. Overall, the immune challenge induced limited costs at the molecular and cellular levels but had strong effects at the whole organism level, especially on behavior. Indeed, fish swimming activity and sociability were affected in a dose- and time-dependent manner. These results suggest that immune challenges have dose-dependent effects across levels of biological organization and that behavior is a key response trait to cope with pathogen-induced immune costs in the wild, although fitness consequences remain to be tested. , Highlights The costs induced by immune challenge vary in fish in a dose- and time-dependent manner. Medium and high doses of antigens mostly affected immune and behavioral traits with limited effects on fish condition, likely due to energy reallocation
    corecore