126 research outputs found
Stability of trapped Bose-Einstein condensates
In three-dimensional trapped Bose-Einstein condensate (BEC), described by the
time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of
initial conditions on stability using a Gaussian variational approach and exact
numerical simulations. We also discuss the validity of the criterion for
stability suggested by Vakhitov and Kolokolov. The maximum initial chirp
(initial focusing defocusing of cloud) that can lead a stable condensate to
collapse even before the number of atoms reaches its critical limit is obtained
for several specific cases. When we consider two- and three-body nonlinear
terms, with negative cubic and positive quintic terms, we have the conditions
for the existence of two phases in the condensate. In this case, the magnitude
of the oscillations between the two phases are studied considering sufficient
large initial chirps. The occurrence of collapse in a BEC with repulsive
two-body interaction is also shown to be possible.Comment: 15 pages, 11 figure
Numerical study of the coupled time-dependent Gross-Pitaevskii equation: Application to Bose-Einstein condensation
We present a numerical study of the coupled time-dependent Gross-Pitaevskii
equation, which describes the Bose-Einstein condensate of several types of
trapped bosons at ultralow temperature with both attractive and repulsive
interatomic interactions. The same approach is used to study both stationary
and time-evolution problems. We consider up to four types of atoms in the study
of stationary problems. We consider the time-evolution problems where the
frequencies of the traps or the atomic scattering lengths are suddenly changed
in a stable preformed condensate. We also study the effect of periodically
varying these frequencies or scattering lengths on a preformed condensate.
These changes introduce oscillations in the condensate which are studied in
detail. Good convergence is obtained in all cases studied.Comment: 9 pages, 10 figures, accepted in Physical Review
Stable spinning optical solitons in three dimensions
We introduce spatiotemporal spinning solitons (vortex tori) of the
three-dimensional nonlinear Schrodinger equation with focusing cubic and
defocusing quintic nonlinearities. The first ever found completely stable
spatiotemporal vortex solitons are demonstrated. A general conclusion is that
stable spinning solitons are possible as a result of competition between
focusing and defocusing nonlinearities.Comment: 4 pages, 6 figures, accepted to Phys. Rev. Let
Scissors modes in triaxial metal clusters
We study the scissors mode (orbital M1 excitations) in small Na clusters,
triaxial metal clusters and and the
close-to-spherical , all described in DFT with detailed ionic
background. The scissors modes built on spin-saturated ground and
spin-polarized isomeric states are analyzed in virtue of both macroscopic
collective and microscopic shell-model treatments. It is shown that the mutual
destruction of Coulomb and the exchange-correlation parts of the residual
interaction makes the collective shift small and the net effect can depend on
details of the actual excited state. The crosstalk with dipole and spin-dipole
modes is studied in detail. In particular, a strong crosstalk with spin-dipole
negative-parity mode is found in the case of spin-polarized states. Triaxiality
and ionic structure considerably complicate the scissors response, mainly at
expense of stronger fragmentation of the strength. Nevertheless, even in these
complicated cases the scissors mode is mainly determined by the global
deformation. The detailed ionic structure destroys the spherical symmetry and
can cause finite M1 response (transverse optical mode) even in clusters with
zero global deformation. But its strength turns out to be much smaller than for
the genuine scissors modes in deformed systems.Comment: 17 pages, 5 figure
Numerical study of the spherically-symmetric Gross-Pitaevskii equation in two space dimensions
We present a numerical study of the time-dependent and time-independent
Gross-Pitaevskii (GP) equation in two space dimensions, which describes the
Bose-Einstein condensate of trapped bosons at ultralow temperature with both
attractive and repulsive interatomic interactions. Both time-dependent and
time-independent GP equations are used to study the stationary problems. In
addition the time-dependent approach is used to study some evolution problems
of the condensate. Specifically, we study the evolution problem where the trap
energy is suddenly changed in a stable preformed condensate. In this case the
system oscillates with increasing amplitude and does not remain limited between
two stable configurations. Good convergence is obtained in all cases studied.Comment: 9 latex pages, 7 postscript figures, To appear in Phys. Rev.
BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations
We analyze the phenomena of Bose Novae, as described by Donley et al [Nature
412, 295 (2001)], by focusing on the behavior of excitations or fluctuations
above the condensate, as driven by the dynamics of the condensate (rather than
the dynamics of the condensate alone or the kinetics of the atoms). The
dynamics of the condensate squeezes and amplifies the quantum excitations,
mixing the positive and negative frequency components of their wave functions
thereby creating particles which appear as bursts and jets. By analyzing the
changing amplitude and particle content of these excitations, our simple
physical picture (based on a test field approximation) explains well the
overall features of the Bose Novae phenomena and provide excellent quantitative
fits with experimental data on several aspects, such as the scaling behavior of
the collapse time and the amount of particles in the jet. The predictions of
the bursts at this level of approximation is less than satisfactory but may be
improved on by including the backreaction of the excitations on the condensate.
The mechanism behind the dominant effect -- parametric amplification of vacuum
fluctuations and freezing of modes outside of horizon -- is similar to that of
cosmological particle creation and structure formation in a rapid quench (which
is fundamentally different from Hawking radiation in black holes). This shows
that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure
The theory of optical dispersive shock waves in photorefractive media
The theory of optical dispersive shocks generated in propagation of light
beams through photorefractive media is developed. Full one-dimensional
analytical theory based on the Whitham modulation approach is given for the
simplest case of sharp step-like initial discontinuity in a beam with
one-dimensional strip-like geometry. This approach is confirmed by numerical
simulations which are extended also to beams with cylindrical symmetry. The
theory explains recent experiments where such dispersive shock waves have been
observed.Comment: 26 page
The Nuclear Sigma Term in the Skyrme Model: Pion-Nucleus Interaction
The nuclear sigma term is calculated including the nuclear matrix element of
the derivative of the NN interaction with respect to the quark mass,
. The NN potential is evaluated in the
skyrmion-skyrmion picture within the quantized product ansatz. The contribution
of the NN potential to the nuclear sigma term provides repulsion to the
pion-nucleus interaction. The strength of the s-wave pion-nucleus optical
potential is estimated including such contribution. The results are consistent
with the analysis of the experimental data.Comment: 16 pages (latex), 3 figures (eps), e-mail: [email protected] and
[email protected]
Quark Condensate in the Deuteron
We study the changes produced by the deuteron on the QCD quark condensate by
means the Feynman-Hellmann theorem and find that the pion mass dependence of
the pion-nucleon coupling could play an important role. We also discuss the
relation between the many body effect of the condensate and the meson exchange
currents, as seen by photons and pions. For pion probes, the many-body term in
the physical amplitude differs significantly from that of soft pions, the one
linked to the condensate. Thus no information about the many-body term of the
condensate can be extracted from the pion-deuteron scattering length. On the
other hand, in the Compton amplitude, the relationship with the condensate is a
more direct one.Comment: to appear in Physics Review C (19 pages, 3 figures
Early Universe Quantum Processes in BEC Collapse Experiments
We show that in the collapse of a Bose-Einstein condensate (BEC) {For an
excellent introduction to BEC theory, see C. Pethick and H. Smith,
Bose-Einstein condensation in dilute gases (Cambridge University Press,
Cambridge, England, 2002)} certain processes involved and mechanisms at work
share a common origin with corresponding quantum field processes in the early
universe such as particle creation, structure formation and spinodal
instability. Phenomena associated with the controlled BEC collapse observed in
the experiment of Donley et al E. Donley et. al., Nature 412, 295 (2001)(they
call it `Bose-Nova', see also J. Chin, J. Vogels and W. Ketterle, Phys. Rev.
Lett. 90, 160405 (2003)) such as the appearance of bursts and jets can be
explained as a consequence of the squeezing and amplification of quantum
fluctuations above the condensate by the dynamics of the condensate. Using the
physical insight gained in depicting these cosmological processes, our analysis
of the changing amplitude and particle contents of quantum excitations in these
BEC dynamics provides excellent quantitative fits with the experimental data on
the scaling behavior of the collapse time and the amount of particles emitted
in the jets. Because of the coherence properties of BEC and the high degree of
control and measurement precision in atomic and optical systems, we see great
potential in the design of tabletop experiments for testing out general ideas
and specific (quantum field) processes in the early universe, thus opening up
the possibility for implementing `laboratory cosmology'.Comment: 7 pages, 3 figures. Invited Talk presented at the Peyresq Meetings of
Gravitation and Cosmology, 200
- …